Analyzing trade-offs between production, economics, land use and labour in mountain farming systems through longterm simulation

Villalba D., Ripoll G., Ruiz R., Bernués A. Departament de Producció Animal, Universitat de Lleida, Lleida, Spain. Centro de Investigación y Tecnología Agroalimentaria de Aragón, Zaragoza, Spain. NEIKER-Tecnalia, Vitoria, Spain.

Study funded by INIA (Spanish Ministry for Education and Science)

neiker`

cita

Simulation Model: Assesment of LFS dynamics

- Mountain livestock play a number of crucial functions beyond production of food
- New management strategies will need take into account structural, managerial and social changes occurred in recent years
- Simulation models are able to integrate the multiple factors involved in LFS dynamics
 - Reproduction and nutrition, management, animal physiology, availability of resources,..
 - Throughout long periods of time

×Ů×

Objective

- Compare the long-term performance of mountain beef cattle herds under diverse:
 - Feeding, reproductive and land use management strategies
- Using a herd dynamics simulation model
- Analyzing derived trade-offs between production, economics, land use and labour input

The herd dynamic simulator (*Nodriza*) : An Overview

- Beef cattle model based on an stochastic and dynamic animal sub-model presenting management –nutrition reproduction interactions
- Parameterized and Validated under conditions of Spanish Pyrenees. Work of "La Garcipollera" research station since 1987
- The equations of the model have been programmed in Visual Basic 2005 express edition
 B in order to facilitate its use. The Nodriza software designed had different visual interfaces where diverse scenarios can be defined.

Simulated Strategies				
Management strategy	Calving length	Weaning		
Winter calving (WC)	3 months	180 days		
Autumn calving (AC)	3 months	160 days		
8 months calving (<mark>8MC</mark>)	8 months	180 days		
2 calving in 3 vears	2 months	170 days (2C3Y)		
Reduction of labour cos some natural resources	its & Better use of	270 days (<mark>2C3Y9M</mark>)		

Simulation Results: Reproductive				
performance				

	Strategy ¹					
	WC	AC	8MC	2C3Y	2C3Y9M	
Fertility (%) ²	78.0	88.2	92.2	93.5	94.4	
SD (%)	3.71	2.21	1.83	0.85	0.52	
max (%)	81.7	92.1	94	95	95	
min (%)	70 7	83.9	90.1	92.8	93.9	

¹ WC, winter calving; AC, autumn calving; 8MC, 8 months calving; 2C3Y, 2 calving in 3 years;

2C3Y9M, 2 calving in 3 years with weaning at 9 months.

² number of pregnant cows at the end of mating season *100/total cows

Simulation Results: Production and labour

	WC	AC	8MC	2C3Y	2C3Y9M
Production					
Weaned calves ¹	76	86		59	60
Calving days per year (d)	90	90	240	40	40
Weight at weaning (kg)	219	197	204	201	298
Length of fattening (d)	176	189	185	187	126
Labour					
Total labour (h)	458	519	670	379	420
Grazing management (h)	183	102	126	147	180
Feeding in-door (h)	173	312	290	182	190
Calving supervision (h)	102	104	255	50	50

Simulation Results: Land use

	WC	AC	8MC	2C3Y	2C3Y9M
Land use					
Winter supplementation (d)	122	165	165	122	122
Supra-forest pastures (d)	106	106	106	106	106
Valley meadows (d)	42	16	38	20	65
Forest pastures (d)	95	78	56	117	72

Conclusions

- Relatively intensive strategies, such as 8MC and WC, yielded the highest economic margins, but the alternative low-labour/ extensive strategy is feasible and less sensible to increases of feed prices.
- Simulations should be used to explore new management strategies and analyze the consequences of their implementation under diverse scenarios, rather than being conclusive tests for choosing the optimal strategy.

