marinus.tepas@wur.nl

Biomarker development for stressresponse and pork meat quality

Marinus te Pas, Els Keuning, Dick van de Wiel, Leo Kruijt, Jette Young*, and Niels Oksbjerg* Animal Breeding & Genomics Centre * University Aarhus

Introduction

Meat quality is influenced by pre-slaughter stress
Exercise is a stressful event for an animal not used to physical exercise

Resting restores the pre-stress conditions
How can we know that pre-stress conditions are reached?: Biomarkers

Biomarkers: Why and How

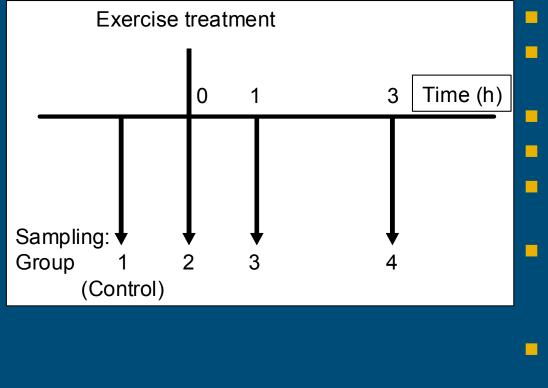
To Monitor and Predict Biological processes
Difficult or Expensive to measure Biological processes

Easy and Cheap measurable molecules

Can be used to **direct** industrial processes

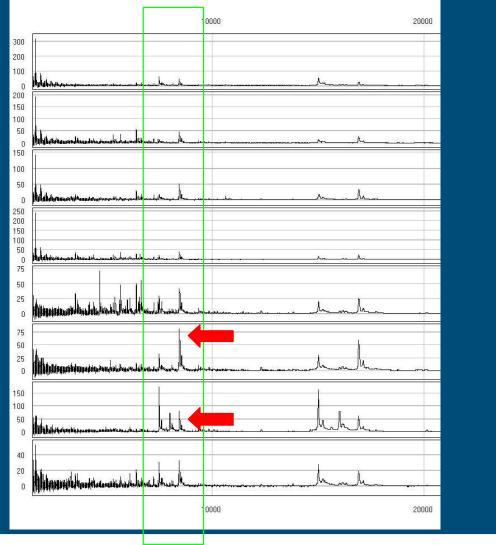
Aim of the study

Develop biomarkers that monitor and predict:

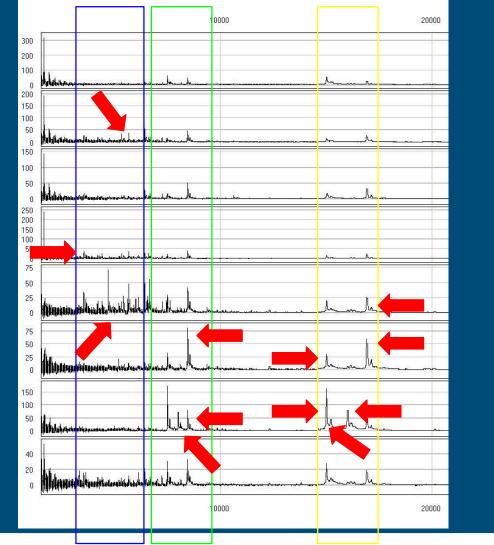

- The effects of stress and resting time
- The biochemical / meat quality parameters
- The optimal moment of slaughtering

The Proteome is a major constituent of meat, thus:

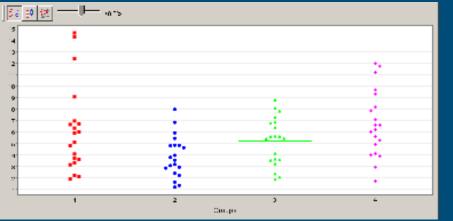
- changes will affect meat quality
- Changes may be related to the reaction to stress and resting

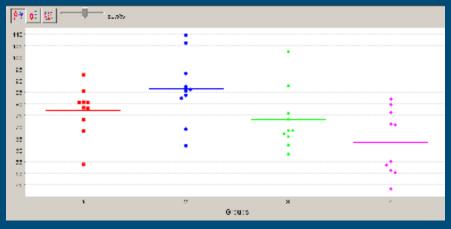

Experimental design

- 4 groups of 10 sows each
- Moment 0: 30 min running on a treadmill
- Rest: 0, 1, 3 h before slaughter
- Sample LD and BF at slaughter
- Measure biochemical / meat quality traits
- Proteomics abundance profiles
 - Per muscle, all animals
 - Grouping per treatment group
- Analyze with group and biochemical / meat quality data



Proteomics profiles: Example


Proteomics profiles: Example



Group related proteomic peak abundance profiles

Stress reversal

Over react

 Exercise reduces or increases peak abundance
Rest reverses stress effect
Rest can over react

 Animal differences may point to phenotypic differences for stress resistance

Association number of peaks per trait per muscle

Trait	LD	BF
pH	27	17
Drip loss	8	8
Minolta L	2	2
Minolta b	15	14
CP	18	14
IMP	2	22
ADP	4	24
ATP	3	31
Pro glycogen	22	41
Total Glycogen	26	27

 Energy metabolism traits differ between muscles

- BF more associations
- BF also more functional during exercise

Monitoring and predicting both exercise and

biochemical / meat quality parameters

Protein	Trait	P-value	P1-2	P2-3	P2-4
1	ATP	0.03921	0.01		
2	ATP	0.03305	0.01		
3	ATP	0.00913	0.02	0.03	0.01
3	Inositol mono phosphate	0.043114	0.02	0.03	0.01
4	ATP	0.029809	0.02	0.06	0.01
4	Pro glycogen	0.035421	0.02	0.07	0.01
5	ATP	0.011559	0.02		
5	creatine phosphate	0.03597	0.02		
6	ADP	0.047418	0.03	0.004	0.003
6	ATP	0.020479	0.03	0.004	0.003
6	Creatine phosphate	0.037661	0.03	0.004	0.003
6	Drip loss	0.03436	0.03	0.004	0.003
6	Inositol mono phosphate	0.011835	0.03	0.004	0.003

Discussion: How can we use these data?

Monitor and predict:

- the effect of exercise on muscle tissue and meat quality
- the effect of resting after exercise on muscle tissue and meat quality

• the optimal moment of slaughtering

Conclusion - summary

- We developed potential biomarkers
- Biomarkers could monitor and predict more than one process at a time
- Biomarker development
 - What is needed to develop the biomarker from these data towards commercial use?
 - Identification of peak
 - Fast, cheap test development
 - Validation in other datasets / other commercial environments
 - Proof of concept in industrial environment

<u>Acknowledgement</u>

Niels Oksbjerg and Jette Young for providing muscle tissue samples

EU and Dutch Agricultural Ministry for funding

Q-Porkchains colleagues for valuable discussions

