

Premature luteal regression in superovulated goats induced to ovulate with GnRH or hCG

M. Saleh, M. Gauly and W. Holtz

Day of the Estrous Cycle

Introduction

Premature CL regression

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Introduction

Objectives:

Combination Ovsynch and superovulation
Comparison GnRH and hCG for ovulation induction :

- LH surge
- Ovulation time
- Premature CL regression
- Embryo recovery

Material and Methods

Treatment	Total
GnRH	17
hCG	17
Control	17
Total	<i>51</i>

Material & Methods

Hormones for Estrus Synchronisation and Superovulation

- **D** Prostaglandin $F_{2\alpha}$ (PGF) Dinolytic[®]
- □ Follicle Stimulating Hormone (FSH) Stimufol®
- Gonadotropin-Releasing Hormone (GnRH) Buserelin®
- Human Chorionic Gonadotropin (hCG) Chorulon®
- Progestogen (P4) Crestar[®]

Material & Methods

Results

Results

Results

Preovulatory LH-surge (Mean ±SE)

Treatment	Onset after treatment (h)	Peak after treatment (h)	Duration (h)
GnRH	0.9 ±0.1 °	2.5 ±0.2 °	7.2 ±0.6 ^a
hCG	11.8 ±0.5 ^b	15.1 ±0.8 ^b	10.2 ±1.0 b
Control	16.8 ±2.2 °	19.4 ±2.2 °	9.6 ±0.7 ^b

Different letters signify significant differences among groups (p<0.01)

Treatment	Ovulation after treatment (h)
GnRH	24.0 ±2.8 °
hCG	34.7 ±6.4 ^b
Control	43.4 ±9.9 ^c

Different letters signify significant differences among groups (p<0.01)

Premature CL regression %

Different letters signify significant differences among groups (p<0.01)

Progesterone concentration

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Transferable Embryos

	Without ear implant		With ear implant	
Treatment	No. does	Transferable embryos	No. does	Transferable embryos
GnRH	6	0	11	3.2 (0-9)
hCG	6	1.0 (0-6)	11	2.0 (0-7)
Control	6	1.0 (0-5)	11	4.6 (3-11)

Conclusion

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

- Synchronisation of LH surge optimal with GnRH
- Premature luteal regression became evident by day 4 after ovulation
- Both GnRH and hCG treatment significantly increased the incidence of premature CL regression
- No significant differences between GnRH, hCG and NaCl with regard to number of transferable embryos

Substitution of hCG for GnRH as ovulation inducing agent did not solve the problem

Thank you to:J.F. Beckers(Stimufol®)Pharmacia(Dinolytic®)Intervet(Buserelin®, Chorulon®, Crestar®)