GxE interactions in Churra dairy sheep: Heterogeneity across lactations and reaction norms

J.P. Sánchez, L.F. de la Fuente, J.A. Carriedo, F. San Primitivo Dept. de Producción Animal, Universidad de León jpsans@unileon.es

Introduction

Wide environmental variability in Churra Sheep

- Technological degrees in herds
- Degrees of intensification
 - Productive
 - Reproductive
- Geographical
 - Plane land
 - Mountains
- Is this wide variability interacting with genes?

Mountains

Plane Lands

Intensive

More intensive...

Introduction

- Genetic parameter estimates are lower than those obtained in other populations performing under more homogeneous environment (Lacaune), although the main factors considered are the same.
- Some evidences of GxE interactions and Heterogeneity across lactations:
 - Production (Cappelletti, 1998, Ph.D. Thesis)
 - Longevity (El Said et al., 2005, Livestock Science)

Objectives

 Does exist genetic heterogeneity across lactations for milk yield?

Are GxE interactions relevant factors in the determination of milk yield?

Material & Methods

- Animals
 - 89,602 Test Day Records (2000-2008)
 - 7,242 Ewes
 - 6,807 Contemporary Groups HTD (34 Herds)
 - 18,527 Genealogical Records
 - 42 Genetic Groups (Year & Sex)

Material & Methods

Data Edition Criteria

- Ewes sired by AI rams with at least 10 daughters.
- Ewes at least 12 months old.
- First lactation records should be recorded.
- Records produced in the first 27 weeks of lactation.
- A minimum of 4 controls per lactation was requested.
- For considering data from a herd a minimum of 750 records should be present in that herd.

Statistical Models

Univariate models

- All lactations are repetitions of the same trait

Multivariate models

- 1st, 2nd y >= 3rd are different but correlated traits
 - For investigating heterogeneity across lactations

Statistical Models

Random Regression models

- Trait's variances change throughout an environmental scale
 - For investigating GxE interactions (reaction norms)

Animal Repeatability models

- Trait's variances are constant along the environmental scale
 - They were used in models without GxE interactions

Statistical Models

 $\mathbf{x}_{h}^{\prime}\boldsymbol{\beta} = HTD_{it} + L_{it} + AGE(L)_{it} + BA_{kt} + C_{lt} + WIL_{mt}$ • NO GxE UAR MAR $y_{hp} = \mathbf{x}'_{h}\mathbf{\beta} + a_{p} + p_{p} + e_{hp}$ $y_{hpt} = \mathbf{x}'_{h}\mathbf{\beta} + a_{pt} + p_{pt} + e_{hpt}$ GxE $y_{it} = HTD_{it} + e_{it}$ **RR-UAR** $y_{hp} = \mathbf{x}'_{h}\mathbf{\beta} + a_{\text{int},p} + HTD_{i} \times a_{slo,p} + p_{\text{int},p} + HTD_{i} \times p_{slo,p} + e_{hp}$ **RR-MAR** $y_{hpt} = \mathbf{x}'_{h}\mathbf{\beta} + a_{int, pt} + HTD_{it} \times a_{slo, pt} + p_{int, pt} + HTD_{it} \times p_{slo, pt} + e_{hpt}$

Fitting Test (LRT)

		d.f.	-	2log(L)	Al	С	
UAR		82,65	5 45	5,386.82	455,39	92.82	
RR-UAR		82,65	1 45	51,378.80	451,39	96.80	
MAR		82,64	0 39	6,874.02	396,92	28.02	
RR-MAR 82		82,61	0 39	0,322.77	390,48	34.77	
d.f.: N – rank(X) Fixed model – (# Genetic Groups - 1) – # Var. Comp. 89602 – 6903 – 41 – nº V.C.							
	UAR		RR-l	RR-UAR		MAR	
	-2log(LR)	Δ g.l.	-2log(LR)	Δ g.l.	-2log(LR)	∆ g.l	
RR-UAR	4008.02	4					
MAR	58512.80	15	54504.78	11			
RR-MAR	65064.05	45	61056.03	41	6551.25	30	

Fitting Test (LRT)

		d.f.		-2log(L)	Al	3	
UA	٨R	82,65	5 4	55,386.82	455,39)2.82	
RR-UAR 82,6		82,65	1 4	51,378.80	451,396.80		
MAR 82,6		82,640) 39	96,874.02	396,928.02		
RR-MAR 82,610			90,322.77	390,48			
d.f.: N – rank(X) Fixed model – (# Genetic Groups - 1) – # Var. Comp. 89602 – 6903 – 41 – nº V.C.							
UAR		RR-UAR		MAR			
	-2log(LR)	Δ d.f.	-2log(LR)	Δ d.f.	-2log(LR)	Δ d.f.	
RR-UAR MAR		P-V	ALL	JES	= 0		

Genetic Parameter Estimates NO GxE

UAR		MAR	
h²(Rep.)	1 Lact.	2 Lact.	>=3 Lact.
0.12	0.16	0.89	0.78
		0.13	0.81
			0.12

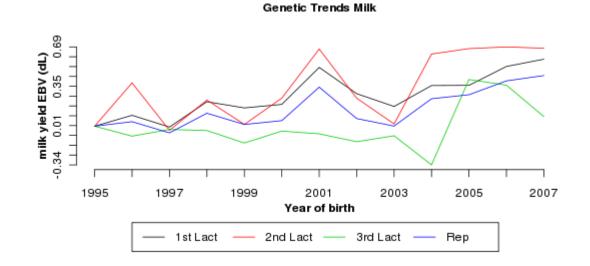


Genetic Parameter Estimates GxE

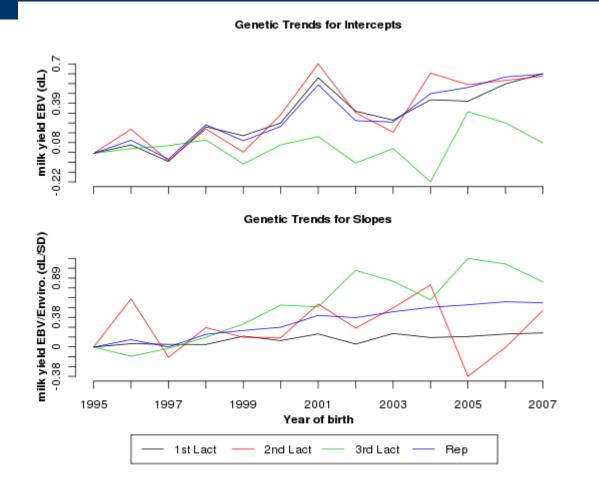
		RR-UAR		RR-MAF	R
		Rep.	1 Lact.	2 Lact.	>=3 Lact.
	h² (@ 0)	0.13	0.19	0.13	0.05
σ²,	$_{a,s}$ / σ^2_{e} + $\sigma^2_{a,s}$ + $\sigma^2_{p,s}$	0.05	0.16	0.03	0.08
	ρ _{inter-slope}	0.72	0.91	0.49	0.61

Genetic Parameter Estimates GxE

Conclusions & Discussion


- Heterogeneity across lactations is significant
 - First lactation shows the higher heritability
- GxE interaction is significant
 - First and >=Third Lactations!!!
- By considering these factors an increase in the genetic response would be expected
 - Animals will be selected considering the environment where they will perform
 - Will the different EBVs for a particular animal be reliable enough to guarantee the expected higher response?
- Increased Organizational difficulties in the selection schema
- Environment conservation.
 - To be efficient would not be needed to homogenize environmental conditions

Thank you for your attention !!



Genetic Trends: NO GxE

Genetic Trends: GxE

