60^{°th} Annual Meeting of the European Federation of Animal Science Barcelona (Spain), 24-27 August 2009

Development of a custom microarray platform for nutrigenomics studies in sheep B. Stefanon¹, S. Sgorlon¹, M. Colitti¹, E. Asquini², A. Ferrarini³ ¹Department of Animal Sciences, University of Udine ²Department of Biology, University of Trieste ³Department of Biotechnology, University of Verona

STREP-EC 2005-2008 "Evaluating physiological and environmental consequences of using organic wastes after technological processing in diets for livestock and humans"

Background

Nutrients and diet regulate gene expression and are relevant for functional homeostasis - NUTRIGENOMIC

Nutrigenomic studies are based on HTS techniques

Sheep are also a model of dairy ruminants – cows?

Microarray or equivalent HTS are not yet available for sheep

Requirements to apply Nutrigenomic concepts and to develop HTS

Dietary compounds with nutraceutical activity

Animal model to study their bioactivity: **Proof of evidence**

PHYTOCHEMICALS

The beneficial role of nutraceutics in enhancing the endogenous defences, through the enhancement of key enzymes of **antioxidant defences in humans** has been carefully investigated

In the last decade the interest for these bioactive compounds has been extended also to the livestocks

Bioactivity of phytochemicals: Beyond the antioxidant activity

From: Cancer chemoprevention with dietary phytochemicals (Young-Joon Surh).

Animal model

Some metabolic and chronic diseases can be related to environmental and oxidative stress and to proinflammatory conditions

Stress related (overcrawding, management, stabulation, ..) Cognitive and Non cognitive stress Laminitis / Lameness Ketosis Milk fever Dietary imbalance Abomasum displacement Chronic inflammation Peripartum and onset of lactation

Neuroendocrine Immuno Loop

Aims

Effects of dietary administration of phytochemicals on transcriptome modification after ACTH challenge in sheep using a custom microarray

Materials and methods

Phytochemicals

Compound	Part of plant	Bioactive molecules	Activity expected	Supplier
Echinacea angustifolia	Flowers of Echinacea angustifolia	Echinacoside	Stimulation of phagocytosis, Cytokine production, B lymphocyte production, Anti-inflammatory	INDENA (Milan)
Polinacea TM	Roots of Echinacea angustifolia	Echinacoside and IDN 5405 – a polyphenol derived from caffeic acid	Stimulation of phagocytosis, Cytokine production, B lymphocyte production, Anti-inflammatory	INDENA (Milan)
Andrographis panicolata	Leaves	Andrographolide	Anti-inflammatory, Hepatoprotective, Antioxidant, Pro-apoptotic	INDENA (Milan)
Larix decidua	Sawdust from larch wood	Larixyl acetate, arabinogalactan,	Anti-inflammatory, Immunestimulating	Jannach Lärchenholz GmbH., Thalheim, Styria

Animals

36 Sardinian sheep not pregnant and lactating randomly allotted to 6 experimental groups of 6 ewes each and fed the same basal diet (complete pelletted diet).

- ACTH: positive control, + ACTH;
- <u>Fehi:</u> <u>3 mg/kg LW Echinacea angustifolia + ACTH;</u>
- Andro: 1 mg/kg LW Andrographis paniculata + ACTH;
- Poli: 3 mg/kg LW PolinaceaTM + ACTH;
- ✓ Larch: 1 g/kg LW Larix decidua + ACTH

Experimental model of stress

Induction of cortisol secretion with ACTH injection

i.m. injection of 0.5 mg ACTH agonist twice a day for 3 days Synacthen, Novartis, Varese, Italy - Tetracosactrin acetate

Scheduled blood samples

All the samples were collected at the morning before food administration

* Sampled 3 houres after the beginning of ACTH treatment

**** Sampled 3 houres after the last ACTH injection (51 houres after the beginning of** *ACTH treatment)*

Laboratory protocol

✓ mRNA extraction from PAXgene blood RNA kit

✓ Pooling mRNA of ewes of the same experimental group (equal quantity for each sheep - total 18 pools: 6 groups x 3 times);

✓ Design of probes with Oligowiz software (12.194 Unigenes – NCBI Build #13)

✓ Custom array with 12194 Unigenes, 35-40mer probes

✓ Labelling of the target with
Cy5 fluorofore

Combimatrix 90K

Hyb Clamp for CustomArray™ 4X2K

✓ Hybridization;

✓ Scanning and image acquisition.

Statistical analysis

✓ Expression values of ACTH and TRT groups related to CTR group expression values: Log10 of the ratio for statistical analysis;

✓ Two-factor (group and time) ANOVA (MeV software v4.1 - TIGR); p-values < 0.001;

✓ Hierarchical clustering (Heat map) analysis of differentially expressed genes (MeV software v 4.1 - TIGR);

✓ Annotation of genes with HomoloGene system (about 50% of the genes present on the array have been annotated);

✓ Data mining with FatiGo+ tool (Babelomics v3.2).

Results

Differentially expressed genes - ANOVA

Hyerarchical clustering analysis

695 differentially expressed genes;

341 annotated genes;

29 gene clusters.

Evidence of ACTH effect

<u>Cluster 25:</u> 152 (**58 annotated**) genes DOWN-regulated in T_3 for all the group.

Cluster 25:

Biological processes	%	Genes
cellular metabolic process		RSL1D1 IFNG AGK EPHX2 SUOX DUT LOC730144 CSE1L AIFM1 SUGT1 SCYL1 CREBZF ARV1
		MEF2C C14orf126 NSDHL PCF11 TTK CALR ZNF470 RBM5 CCNH RIOK2 NT5C3 NQO2 PSMC5
	62.97	TGFBR1
primary metabolic process		RSL1D1 IFNG AGK SUOX DUT LOC730144 CSE1L AIFM1 SUGT1 SCYL1 CREBZF ARV1 MEF2C
	58.14	C14orf126 NSDHL PCF11 TTK CALR ZNF470 RBM5 CCNH RIOK2 NT5C3 PSMC5 TGFBR1
macromolecule metabolic process		RSL1D1 IFNG AGK DUT LOC730144 CSE1L AIFM1 SUGT1 SCYL1 CREBZF MEF2C PCF11 TTK
-	46.51	CALR ZNF470 RBM5 CCNH RIOK2 PSMC5 TGFBR1
nucleobase, nucleoside, nucleotide	10101	DUT AIFM1 SCYL1 CREBZF MEF2C PCF11 CALR ZNF470 RBM5 CCNH NT5C3 PSMC5 TGFBR1
and nucleic acid metabolic process	32.56	IFNG
cell communication	25 58	TGFBR1 ARFGEF2 IFNG AGK AIFM1 ZFYVE16 VAC14 GPR125 CEP57 OPTN SNX10
establishment of localization	23.30	CALE CEP57 OPTN SNX10 SLC31A2 AREGEE2 TRAPPC6B IENG CSE11 ZEVVE16 SEC24D
establishment of focalization	25.58	CAER CEI 57 OF TH SHATO SECTRA ANTOER 2 TRAFT COD IF NO CSETE ZFT VETO SEC2+D
transport	23.26	CSE1L ZFYVE16 SEC24D CALR CEP57 OPTN SNX10 SLC31A2 ARFGEF2 TRAPPC6B
signal transduction	20.20	
	23.26	TGFBR1 ARFGEF2 IFNG AGK AIFM1 ZFYVE16 VAC14 GPR125 CEP57 OPTN
cell differentiation	22.26	IFNG BCL2A1 LOC730144 CSE1L AIFM1 CALR CEP57 OPTN PSMC5 TGFBR1
transcription	23.20	PSMC5 TGERR1 IENG SCVI 1 CREBZE MEE2C CALR ZNE470 CCNH
uanscription	20.93	r SMCJ TOFDRT IFNO SCIET CREDZI [*] MEI ² C CAER ZM ⁴ / ⁰ CCMI
RNA biosynthetic process	18.6	SCYL1 CREBZF MEF2C CALR ZNF470 CCNH PSMC5 IFNG
cell cycle	16.28	TTK CALR RBM5 CCNH PSMD2 NCAPG2 SUGT1
programmed cell death	13.95	CSE1L,AIFM1,CALR,PSMC5,IFNG,BCL2A1
response to stress	13.95	CCNH IFNG EPHX2 LOC730144 AIFM1 ORM2
cellular catabolic process	11.63	EPHX2,SUOX,AIFM1,C14orf126,PSMC5

Evidence of bioactive compounds regulation

<u>Cluster 18:</u> 32 (**19 annotated**) genes UP-regulated in ACTH_3

Cluster 18:

Biological processes	%	Genes
cellular metabolic process	66.7	ITGB2 HSPA9 B3GAT3 GADD45A EIF5B SF3B1 KIAA0368 MAP2K1 TLR6 TXNIP
primary metabolic process	60.0	ITGB2 HSPA9 B3GAT3 GADD45A EIF5B SF3B1 KIAA0368 MAP2K1 TLR6
macromolecule metabolic process	60.0	ITGB2 HSPA9 B3GAT3 GADD45A EIF5B SF3B1 KIAA0368 MAP2K1 TLR6
cell differentiation	40.0	GADD45A,EIF5B,TRAF4,TXNIP,ITGB2,HSPA9
cell communication	33.3	RGS19,ITGB2,TRAF4,MAP2K1,TLR6
signal transduction	33.3	RGS19,ITGB2,TRAF4,MAP2K1,TLR6
response to stress	33.3	GADD45A,TLR6,TXNIP,ITGB2,HSPA9
cell development	33.3	ITGB2,HSPA9,GADD45A,EIF5B,TRAF4
apoptosis	26.7	ITGB2,HSPA9,GADD45A,TRAF4
programmed cell death	26.7	TRAF4,ITGB2,HSPA9,GADD45A
response to chemical stimulus	26.7	MAP2K1,TXNIP,ITGB2,HSPA9
response to external stimulus	20.0	MAP2K1,TLR6,ITGB2
response to biotic stimulus	20.0	TLR6,ITGB2,HSPA9
immune response	20.0	HLA-A,TLR6,ITGB2
regulation of programmed cell death	13.3	HSPA9,TRAF4

Molecular signature Factor GROUP x TIME

98 genes

75 annotated genes;

19 clusters

Molecular signature for Andrographis paniculata at T_3

- RPL7L1 (ribosomal protein L7-like 1);
- ZNF313 (zinc finger protein 313);
- THBS4 (thrombospondin 4);
- ATP2B4 (ATPase, Ca++ transporting, plasma membrane 4);
- SFXN3 (sideroflexin 3);
- NANP (N-acetylneuraminic acid phosphatase);
- NDUFS6 (NADH-coenzyme Q reductase);
- FXN (frataxin);

Molecular signature for Andrographis paniculata at T_3

ATP2B4: Ca++ regulation

SFXN3: Iron trasnporter

NDUFS6: Oxidoreductase

FXN: Prevents mitochondrial damage and ROS production

-6.0										0.0																			6.0 ස්
ACTH_0	ACTH_0	POLI_0	POLI_0	ECHI_0	ECHIO	ANDRO_C	ANDRO_C	LARCH_C	LARCH_C	ACTH_3	ACTH_3	POLI_3	POLI_3	ECHI_3	ECHI_3	ANDR0_3	ANDR0_3	LARCH_3	LARCH_3	ACTH_51	ACTH_51	POLI_51	POLI_51	ECHI_51	ECHI_51	ANDRO_5	ANDRO_5	LARCH	LARCH

Molecular signature for Echinacea angustifolia at T_51

- GADD45B (growth arrest and DNA-damage-inducible, beta);
- HYOU1 (hypoxia up-regulated 1); HSP70 family
- NOS3 (nitric oxide synthase 3 (endothelial cell);
- ATP2A2 (ATPase, Ca++ transporting, cardiac muscle, slow twitch 2);
- IL27RA (interleukin 27 receptor, alpha)

-6.0										0.0																				
ACTH_0	ACTH_0	POLI_0	POLI_0	ECHIO	ECHIO	ANDRO_0	ANDRO_0	LARCH_O	LARCH_0	ACTH_3	ACTH_3	POLI_3	POLI_3	ECHI_3	ECHI_3	ANDR0_3	ANDR0_3	LARCH_3	LARCH_3	ACTH_51	ACTH_51	POLI_51	POLI_51	ECHI_51	ECHI_51	ANDR0_5	ANDR0_5	LARCH_5	LARCH_5	
																														NAC SING TAG ATP TAG

Molecular signature for Echinacea angustifolia at T_51

GADD45B: Responds to environmental stresses, regulation of growth and apoptosis

HYOU1: Member of HSP70 family

eNOS: deficiency results in hypertension, increased vascular smooth muscle cell proliferation in response to vessel injury, increased leukocyte–endothelial interactions, hypercoagulability and increased diet-induced atherosclerosis.

ATP2A2: Ca++ regulation

IL27RA: Involved in the regulation of Th1-type immune responses. Involved in innate defense mechanisms

CONCLUSIONS

✓ The custom microarray is available for nutrigenomic applications – need to be updated;

Data mining showed that a large percentage of differentially expressed genes belong to biological processes:
cell communication
signal transduction
cell differentiation
intracellular signalling cascade
response to stress
apoptosis

CONCLUSIONS

✓ HCL underlined the effect of ACTH treatment and specific biomarkers of cortisol-mediated stress

✓ HCL allowed to study the regulatory effects of compounds administered

✓ Tentative molecular signatures of the tested compounds

✓ CLINICAL TRIALS ARE REQUIRED TO VALIDATE THE USE OF THESE COMPOUNDS AT A FARM LEVEL

Thank you

