

© NRC on Pig, 2009

Introduction

- · Fatty acid synthesis regulated by hormones as well as dietary fat
- Fatty acid synthase (FAS) and stearoyl-coenzyme desaturase (SCD) form key enzymes determine fatty acid composition
- · Desaturation forms the first regulatory step in formation of long chain of unsaturated fatty acids
- Lipogenesis-highly responsive to changes in the diet • (Madsen et al., 1992).

•

Materials and methods

- Eighteen crossbred (Hampshire x Assam local) male grower pigs (n=6)
- Fed with isocaloric ration containing either sunflower oil or coconut oil.
- · Oil contributed 10% of the total feed energy.
- The control group on standard farm ration.
- The experimental feeding continued for two months.

Materials and methods (contd.)

- Blood was collected and body weight was measured at ten day intervals to assess the following serum parameters
 - Glucose
 - Cholesterol
 - · Total triglycerides
 - High density lipoprotein, low density lipoprotein, very low density lipoprotein

Materials and methods (contd.)

- At the beginning and end of the study the subcutaneous adipose tissue to study gene expressions following RNA isolation, reverse transcription and real time polymerase chain reaction using gene specific primers.
- Enzymes (fatty acid synthase, Stearoyl CoA desaturase)
- Transcription factors (SREBP-1c, CEBP α, PPARy)
- A part of adipose tissue collected at the time of slaughter analyzed for fatty acid composition using a gas chromatograph.

Materials and methods (contd.)

- Forty cycles of amplifications with the following thermal cycling conditions: initial denaturation-94°C for 6 minutes, cycling- 94°C for 40sec, 59°C for 60sec and 72°C for 40 sec and final extension for 6 minutes at 72°C except for SCD, where annealing temperature was kept at 56°C.
- The relative quantification of target genes expression were calculated using 2- Δ Δ Ct method (Livak and Schmittgen, 2001).
- All gene expression values normalized to 18S and control values taken arbitrarily as 100

- · Serum lipid profile, glucose analysis using standard kits
- Fatty acid composition was determine using GC using and comparing with known fatty acid methyl ester standards

Statistical analysis

Γ

• The data was analyzed using Graphpad prism software and quantification software supplied along with PCR machine. All data are presented as means ±SEM.

Results

Treatment	Period of treatment (days)						
	10	20	30	40	50	60	
Sunflower oil	$0.28\pm$ 0.03	$0.29\pm$ 0.05	0.32 ± 0.04	$\begin{array}{c} 0.31 \pm \\ 0.02 \end{array}$	0.34 ± 0.02	0.39± 0.03	
Coconut oil	$\begin{array}{c} 0.29 \pm \\ 0.03 \end{array}$	$\begin{array}{c} 0.31 \pm \\ 0.02 \end{array}$	$\begin{array}{c} 0.31 \pm \\ 0.03 \end{array}$	$\substack{0.34\pm\\0.03}$	$\begin{array}{c} 0.37 \pm \\ 0.03 \end{array}$	0.40 ± 0.02	
Control	0.26± 0.03	$\begin{array}{c} 0.29 \pm \\ 0.02 \end{array}$	0.29 ± 0.05	$\substack{0.33\pm\\0.03}$	0.36 ± 0.03	0.38 ± 0.02	

3

	FAS	SCD	SREBP- 1c	PPAR y	CEBP 🛱
Coconut oil	$0.84 \pm 0.08^{a^*}$	1.08 ±0.09 ^a	0.99 ± 0.06^{a}	$\begin{array}{c} 1.02 \\ \pm 0.06^a \end{array}$	0.95 ± 0.06^{4}
Sunflower oil	0.39 ±0.06 ^b	0.51 ±0.04 ^b	0.47 ±0.03 ^b	1.18 ±0.09 ^b	0.96 ± 0.09^{4}
Control	$1.03 + 0.14^{a}$	$1.02 + 0.05^{a}$	$1.05 + 0.08^{a}$	$1.01 + 0.08^{a}$	$1.09 + 0.08^{3}$

Change in FA profile following oil feeding (%)

Fatty acid	Sunflower oil group	Coconut oil group
C16:0	-1.88	8.52
C18:0	-4.86	24.48
C18:1	8.52	-9.07
C18:2	10.622	-10.62
C18:3	54.7619	-19.05

Conclusions

- Replacement of 10% feed energy by oil had no significant effect on body weight gain, serum glucose, cholesterol, triglycerides and cholesterol fractions, HDL, LDL and VLDL
- Feeding of coconut oil and sunflower oil caused a shift in subcutaneous adipose tissue fatty acid composition towards saturation and unsaturation respectively
- The feeding of sunflower oil decreased FAS, SCD, SREBP-1c and CEBP β gene expression but increased PPAR γ which suggests that sunflower/PUFA tend to decrease lipogenesis as well as adipogenesis.
- Feeding of coconut oil, does not change expression of lipogenic genes but decreased CEBP β expression, suggesting that saturated fat may decrease adipogenesis

Future suggestions

- Approaches for understanding regulation of genes by nutrients-nutrigenomics/functional genomics
- · Identification of pathways of gene regulation by nutrients
- Molecular regulation of FAS and SCD has implication on manipulation of carcass composition of animals
- Understanding mechanisms in obesity, diabetes, insulin resistance, atherosclerosis etc.
- Role in cellular signaling

