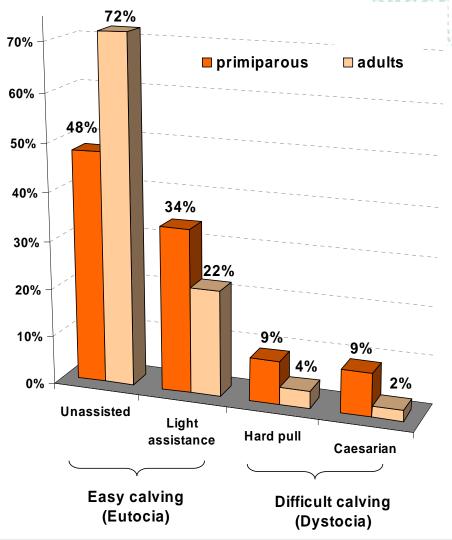
60th Annual EAAP Meeting Barcelona 24-27th August 2009

Session 21

Pelvic opening and dystocia in Charolais cattle

Gilles Renand

A. Vinet, R. Saintilan, D. Krauss


INRA - Animal Genetics Jouy en Josas, France

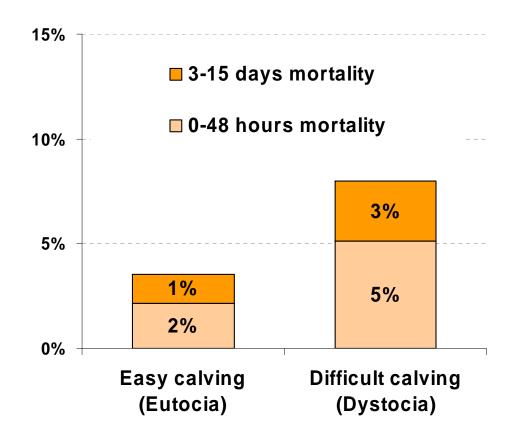
gilles.renand@jouy.inra.fr

Dystocia in the French Charolais breed

Economic consequences

- labour and veterinary expenses
- increased calf mortality
- weakened cow production and reproduction ability

Objective of the study


- analysis of dystocia and associated calf and dam traits
- genetic determinism of traits
- seeking for selection criteria

Experimental design

- INRA Charolais herd
- 3,686 calvings between 1988 and 2008
- random mating: 82 sires and 1,430 cows
- no selection
- 4 calving seasons, no culling

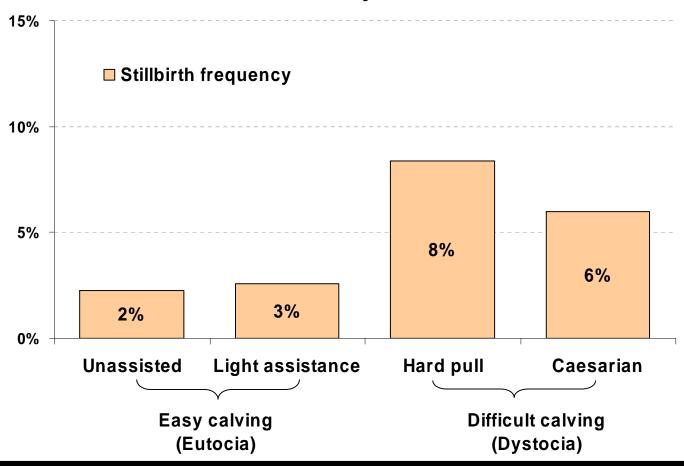
Early mortality in the herd (3,817 calves)

Early mortality in relation to

the calf position at birth

15% Stillbirth frequency 14% 5% 4% Normale position Abnormal position

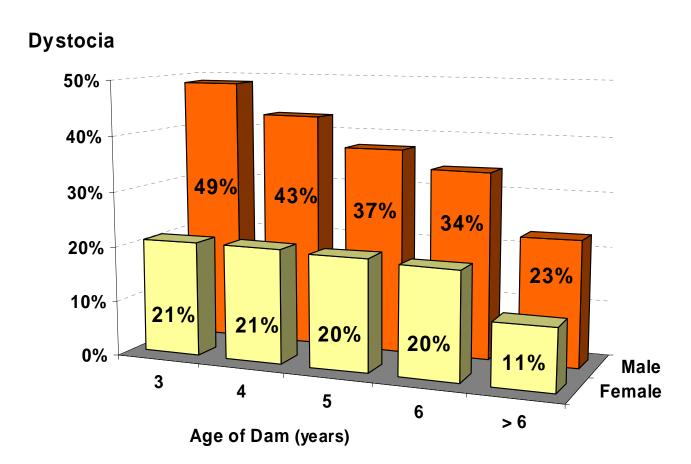
the twinning status



Early mortality of single born & normally positioned calves

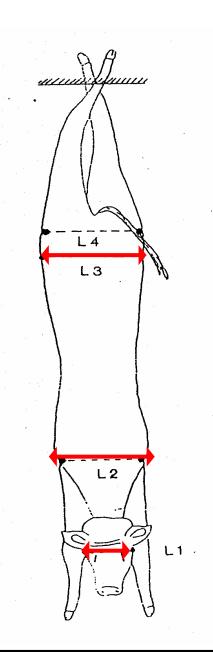
(n=3,328 calves)

in relation to dystocia score



DIET
AGRICULTURE
ENVIRONMENT

Dystocia frequency in relation to the sex of the calf and age of the dam (n=3,328 calves)

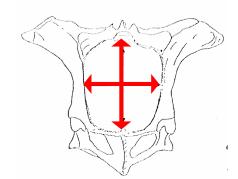

Calf associated traits

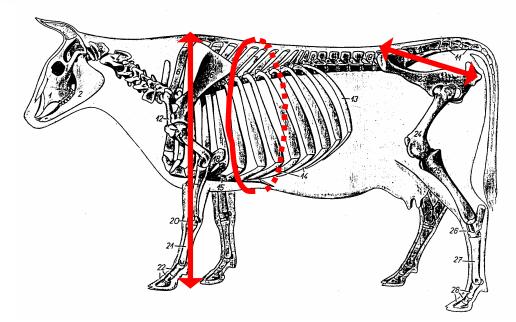
Birth Weight

+ Hip Width

+ Shoulder Width

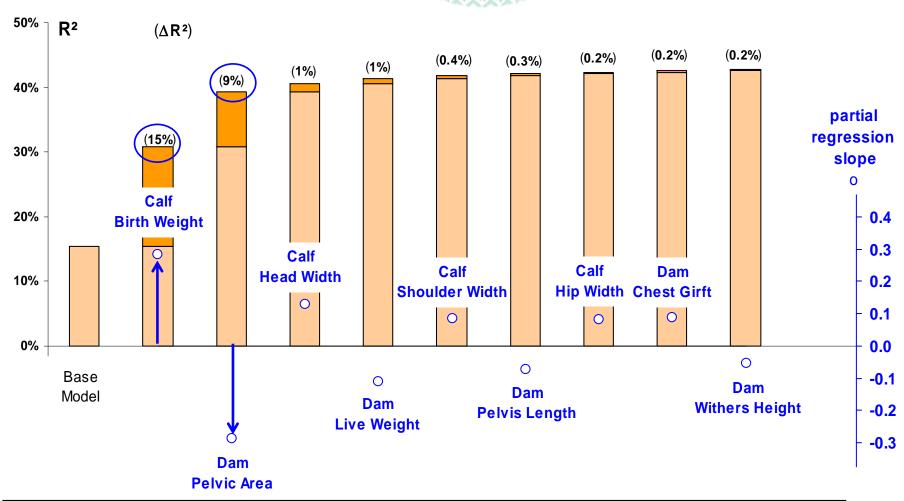
+ Head Width




Cow associated traits

Live Weight

+ Pelvic Area


- + Withers Height
- + Chest Girft
- + Pelvis Length

Multiple regression of Dystocia Score on Calf and Dam traits

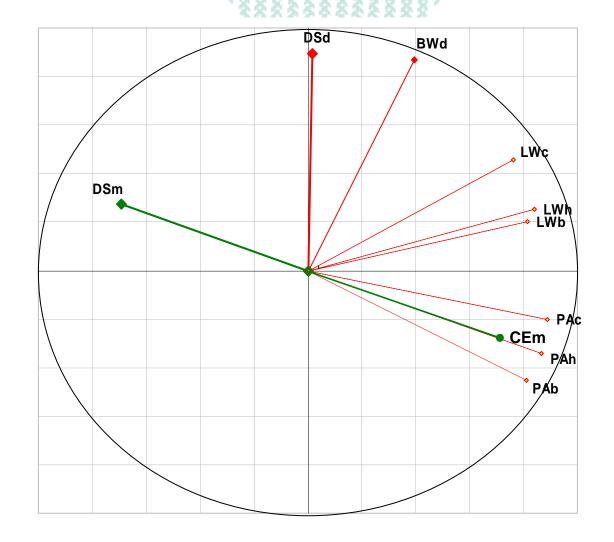
DIET
AGRICULTURE
ENVIRONMENT

Genetic analysis of Dystocia Score & Calf and Dam traits (n=3,817 calves)

The models

		Fixed effects		Regression	Direct component		Maternal component		
Calves									
DS & BW	CG	Sex & Twinning	AgeDam	-	-	Gd	-	Gm	PEm
Cows									
PA & LW	CG	-	-	Calving/Dry	β Age	Gd	PEd	-	-
Heifers									
PA & LW	CG	-	AgeDam	-	β Age	Gd	PEd	-	-
Young Bulls									
PA & LW	CG	-	AgeDam	-	β Age	Gd	-	-	-

Genetic analysis of Dystocia Score & Calf and Dam traits


	Dystocia Score	Birth Weight		Pelvic Area	Live Weight
Direct genetic effe	cts		Cows		
h_d^2	0.25	0.31	h² _d	0.21	0.49
Rg_d	+ 0).91	Rg_d	+ ().47
Maternal genetic e	ffects		Heifers		
h² _m	0.08	0.13	h² _d	0.18	0.47
Rg_m	+ 0).36	Rg_d	+ ().53
			Young Bulls		
			h² _d	0.16	0.33
			Rg_d	+ ().50

Genetic correlations between Dystocia Score & other traits

	Calf Birth Weight	Direct genetic effects	Maternal genetic effects
Calf Birth Weight	1.00	+ 0.91	+ 0.36
Cows			
Live Weight	+ 0.56	+ 0.27	- 0.31
Pelvic Area	+ 0.27	- 0.04	- 0.77
Heifers			
Live Weight	+ 0.53	+ 0.01	- 0.61
Pelvic Area	+ 0.20	- 0.21	- 0.62
Young Bulls			
Live Weight	+ 0.32	+ 0.06	- 0.19
Pelvic Area	- 0.06	- 0.22	- 0.82

Genetic correlations: Principal Component Analysis

Responses to selection of Young Bulls in Performance Testing Stations

Selection Criteria

Correlated responses	LW _b	LW _b - BW	LW _b + PAb		
Young Bull					
Live Weight	+ 0.33	+ 0.16	+ 0.31		
Pelvic Area	+ 0.11	+ 0.09	+ 0.19		
Heifer					
Live Weight	+ 0.33	+ 0.08	+ 0.32		
Pelvic Area	+ 0.13	+ 0.06	+ 0.21		
Calf					
Birth Weight	+ 0.11	- 0.13	+ 0.07		
Dystocia	+ 0.02	- 0.17	- 0.02		
Dam					
Calving Ability	+ 0.03	+ 0.01	+ 0.09		

Conclusions

Dystocia is genetically highly correlated to Birth Weight

Selecting against Birth Weight will improve Calving Ease

Birth Weight is positively correlated to post natal Growth Capacity

Selecting against Birth Weight will reduce post natal Growth Capacity

Maternal Calving Ease is genetically closely correlated with Pelvic Area

Pelvic Area of young bulls is closely correlated with female Pelvic Area

Selecting candidate seed-stock bulls for larger Pelvic Area will improve Calving Ease of females without reduction of post natal Growth Capacity

