60th Annual EAAP Meeting, Barcelona, 24 – 28 August 2009, Session 20

Milk performance, energy efficiency and greenhouse gases of dairy farms : case of Reunion Island

VIGNE Mathieu CIRAD – UR Systèmes d'Elevage Reunion Island – France mathieu.vigne@cirad.fr

60th Annual EAAP Meeting, Barcelona, 24 – 27 August 2009

INTRODUCTION : Study area settings

- Situated in Indian Ocean
- 2,500 km²

- 800,000 people
- Diversity of climate :
 - Altitude
 - East / West

INTRODUCTION : Dairy sector context

Dairy herds located in upland areas (> 400 m)

Feeding systems quite variable

Sugar can forage

INTRODUCTION : Dairy sector context

- Dairy herds located in upland areas (> 400 m)
- Feeding systems quite variable
- 80 % of Holstein
- **24 x10⁶ liters** of milk (~ 40 % of total consumption)
- Limited land ressource :
 - ⇒chronic shortage of forage, high proportions of concentrate
 - ⇒ Enhance milk cost
 - ⇒ Environment impact

QUESTIONS

How to quantify environmental impact of dairy production in Reunion Island ?

How do choosen indicators evolve ?

What are the factors leading these evolutions ?

METHODS

19 dairy farms

• « PLANETE » method in 2000 and 2007

* Energy consumed or GHG emitted to manufacture, transport, package, ...

METHODS

Energy efficiency (outputs / inputs)

Energy consumption to produce 100 liters of milk in Fuel EQuivalent liter (FEQ)

GHG Emission to produce 1000 liters of milk in ton of CO₂ EQuivalent (tCO₂eq)

RESULTS

Energy consumption

	2000	2007	Variation
Energy efficiency	0.40	0.44	+ 10 %
Energy consumption to produce 100 L of milk (in FEQ)	26.0	21.1	- 19 %
Fuel	6,701 <i>(13 %)</i>	7,338 (10 %)	+ 10 %
Electricity	2,780 <i>(6 %)</i>	4,583 <i>(</i> 6 %)	+ 65 %
Imported feed	30,152 <i>(59 %)</i>	41,423 <i>(</i> 57 %)	+ 37 %
Chemical fertilizer	5,119 <i>(10 %)</i>	4,194 <i>(</i> 6 %)	- 18 %
Machinery	2,610 <i>(5 %)</i>	4,050 <i>(6 %)</i>	+ 55 %
Others	3,402 (7 %)	10,487 <i>(15 %)</i>	+ 208 %
Proportion of transport (%)	20.0	28.1	+ 41 %

RESULTS

GHG emissions

	2000	2007	2007
GHG emissions to produce 1,000 L of milk (in FEQ)	2.25	1.89	- 16 %
Proportion of each gas :			
CO ₂	46.0	51.2	+ 11 %
CH ₄	26.9	28.2	+ 4 %
N ₂ O	27.2	20.6	- 25 %
Proportion of transport (%)	16.2	19.7	+ 22 %

RESULTS

Improvement of dairy farms sustainability

⇒ Milk production increase from to l/cow/year

- Enhancement of part of transport and imported feeds
- \Rightarrow + ... % of concentrates

Decrease of mineral fertilizer

⇒ In accordance with local technical support's message (to develop manure as organic fertilisation)

DISCUSSION & CONCLUSION

Positive effect of local support and development policies

- Interest to improve quality local ressources and/or to shift to closer Indian Ocean regional markets for inputs
 - Intensification of agricultural production is not necessarily linked to negative impact on environment

THANKS FOR

YOUR ATTENTION