

Energy consumption, GHG emissions and economic performance assessments in suckler cattle farms. Impact of the conversion to OF

P. Veysset, M. Lherm, D. Bébin

INRA, UR1213 Herbivores, Clermont-Theix, France

Session S.20 veysset@clermont.inra.fr

Eaap 2009, 60th Annual Meeting, Barcelona, August 24th-27th

Introduction

- 2.1% of French UAA is devoted to OF
- Beef from suckler cattle provided 60% of the beef
- Yet only 1.5% of the suckler cows are OF certified
- Conversion to OF of suckler farming systems is not a major technical problem
- Economic results may be at a good level
- To encourage farmers to convert we need:
 to enrich technical and economic observations
 to take into account environmental concerns

Eaap 2009, 60th Annual Meeting, Barcelona, August 24th-27th

Objective

- To assess simultaneously the impact of the conversion of Charolais suckler cattle farms on:
- The production systems and the adaptations needed
- The environmental performances: NRE consumption and GHG emissions
- Economic results

Methodology

Model-based study. Coupling 2 models:

Eaap 2009, 60th Annual Meeting, Barcelona, August 24th-27th

Methodology

4 types of specialised Charolais beef farms:

Opt'INRA outputs: optimized results	A calf-to-weanling & fattened females	B calf-to-weanling 100% grassland farm	C calf-to-beef. Beef steers production	D calf-to-beef. Intensive baby beef production
Farm area ha	95	100	125	155
Fodder area ha	83.3	100	110.7	134
Cereals home-consumed ha	11.7	0	14.3	21
Number of calvings	58	69	68	110
Stocking rate (LU/ha UFA)	1.01	1.09	1.01	1.29
Males sold	Weaners	Weaners	Steers+Weaners	Baby Beef
Heifers sold	Beef Heifers	Store Heifers	Beef Heifers	Beef Heifers
LW produced kg	31 490	35 065	40 444	71 358
Concentrates kg/LU	810	624	728	740
Farm income €	28 960	27 620	39 190	52 803

Methodology - Hypothesis

- Conversion to OF (farm structure constant):
 - → Herd productivity criteria =
 - \rightarrow Live weight of sold animals: -2 to -5%
 - → Pasture: yield -15 to -25%. Cereal: yield -50%
- Products sale prices and costs:
 - → Average prices observed 2004-2007
 - Fattened animals: +5 to +10%
 - Cereals: +60%
 - Purchased concentrates: +25 to +50%
- CAP situation: Luxemburg 2003

Results – Production systems Results – And farm income

Shift to OF: adaptations of the systems

Opt'INRA outputs: optimized results	A (calf-to-weanling & fattened females)	B (calf-to-weanling 100% grassland farm)	C (calf-to-beef. Beef steers production)	D (calf-to-beef. Intensive baby beef production)
Number of calvings	55 <i>(-5%)</i>	55 <i>(-20%)</i>	62 <i>(-9%)</i>	89 <i>(-19%)</i>
Stocking rate (LU/ha UFA)	0.95 (-6%)	0.96 (-12%)	0.89 (-13%)	0.99 (-23%)
Fodder area ha	86.1 <i>(</i> + <i>3%)</i>	100 <i>(=)</i>	110.1 <i>(=)</i>	142.5 (+6%)
Males sold	Weaners	Weaners	Steers+Weaners	Weaners
Heifers sold	Beef Heifers	Beef Heifers	Beef Heifers	Beef Heifers
Live weight produced kg	26 801 (-15%)	28 142 <i>(-20%)</i>	32 793 (-19%)	47 099 (-34%)
Concentrates kg/LU	413 <i>(-49%)</i>	354 (-43%)	400 (-45%)	340 (-54%)
Farm income €	22 058 (-23%)	20 770 (-25%)	36 530 (-7%)	34 516 <i>(-35%)</i>

Eaap 2009, 60th Annual Meeting, Barcelona, August 24th-27th

Results – NRE consumption **INRA** GJ / ton live weight produced

Eaap 2009, 60th Annual Meeting, Barcelona, August 24th-27th

Results – NRE consumption **Results** GJ / Ha

Eaap 2009, 60th Annual Meeting, Barcelona, August 24th-27th

Results – GHG emissions 1000

Eaap 2009, 60th Annual Meeting, Barcelona, August 24th-27th

Results – GHG emissions tCO₂eq / Ha

Eaap 2009, 60th Annual Meeting, Barcelona, August 24th-27th

INA

Multicriteria analysis

Discussion

Conclusions

Improving environmental footprint is one of the OF objectives and should be balanced against other objectives

- → Agricultural outputs
- → Farm income
- Evaluation of a production system in all its dimensions
 - Whole farm models are powerful tools to carry out multicriteria analysis
 - Coupling biophysical, economic and environmental models

Eaap 2009, 60th Annual Meeting, Barcelona, August 24th-27th