Simulating experimental designs to compare and select methods based on linkage disequilibrium (LD) and linkage analysis (LDLA) for studying osteochondrosis in horses.

Simon Teyssèdre¹ F. Ytournel² M-C. Dupuis³ J-M. Denoix³ G. Guérin⁴ A. Ricard¹ J-M. Elsen¹

¹INRA (Toulouse), France ²University of Goettingen, Germany ³ENVA, CIRALE, France ⁴INRA (Jouy en Josas), France

60th Annual EAAP Meeting - Session 19 - Abstract 4564, 2009 simon.teyssedre@toulouse.inra.fr

Introd	uction
00	

Outline

Introduction		

Results

Outline

1	Introduction
	Problem
	 Objectives
	Materials & Methods
	Choice of simulations
	Choice of methods
	Tools used
	Results
	What about regression ?
	And the other methods
4	Discussion & On going
3	 Tools used Results What about regression ? And the other methods Discussion & On going

• • • • • • • • • • • •

Introduction ●○	Materials & Methods	Results 00	Discussion & On going
Problem			

• Objectives of the program GENEQUIN :

- To Identify the genes underlying the affection of osteochondrosis.
- To Obtain case/control data on 600 French trotters.
- Half-sib design with approximately 100 sires.

Introduction ●○	Materials & Methods	Results 00	Discussion & On going
Problem			

- Objectives of the program GENEQUIN :
 - To Identify the genes underlying the affection of osteochondrosis.
 - To Obtain case/control data on 600 French trotters.
 - Half-sib design with approximately 100 sires.
- Difficulties encountered in the program :
 - It was difficult to get horses healthy and affected for each sire.
 - At the middle of the program, we got some fathers with only 1 offspring and others with a lot of offsprings.
 - We got also more sires than expected.

Introduction ●○	Materials & Methods	Results 00	Discussion & On going
Problem			

• Objectives of the program GENEQUIN :

- To Identify the genes underlying the affection of osteochondrosis.
- To Obtain case/control data on 600 French trotters.
- Half-sib design with approximately 100 sires.

• Difficulties encountered in the program :

- It was difficult to get horses healthy and affected for each sire.
- At the middle of the program, we got some fathers with only 1 offspring and others with a lot of offsprings.
- We got also more sires than expected.
- Questions about this program :
 - Should we add new sire families or should we increase the size of offsprings in those families with 1 offspring?
 - Are the associations (LD) and LDLA methods robust for these designs ?

Introduction	Materials & Methods	Results	Discussion & On going
00	000	00	
Objectives			

Definitions :

- Population structure : Historical structure of the population, can be with low or high inbreeding.
- Design : Recent structure of the population, here we talk about half-sib designs.
- We will run simulations with the following objectives :
 - Given a population structure, are LD/LDLA methods robust under different designs?
 - How do methods deal with the problem of population structures?

Introd	
00	

Outline

Introduction	Materials & Methods	Results	Discussion & On going
	00		
Simulations			

- Historical part : 2 different scenarios
 - Inbreeding +, LD +.
 - Inbreeding –, LD –.

- Number of simulations : 100
- Number of markers : 1000
- Number of QTL : 0
- Chromosome length : 1 Morgan

イロト イ団ト イヨト イヨ

Introduction	Materials & Methods	Results	Discussion & On going
OO	●○○	00	
Simulations			

- Historical part : 2 different scenarios
 - Inbreeding +, LD +.
 Inbreeding -, LD -.
- Design part : 3 different scenarios
 - Design10 : 600 offsprings born to 10 sires.
 - Design60 : 600 offsprings born to 60 sires.
 - Design600 : 600 offsprings born to 600 sires.

- Number of simulations : 100
- Number of markers : 1000
- Number of QTL : 0
- Chromosome length : 1 Morgan

Introduction	Materials & Methods	Results	Discussion & On going
OO	●○○	00	
Simulations			

- Historical part : 2 different scenarios
 - Inbreeding +, LD +.
 Inbreeding -, LD -.
 - Inbreeding –; ED –:
- Design part : 3 different scenarios
 - Design10 : 600 offsprings born to 10 sires.
 - Design60 : 600 offsprings born to 60 sires.
 - Design600 : 600 offsprings born to 600 sires.
- Analysis part : 4 different methods

- Number of simulations : 100
- Number of markers : 1000
- Number of QTL : 0
- Chromosome length : 1 Morgan

Introduction	Materials & Methods	Results	Discussion & On going
00	○●○	00	
Choice of	methods		

We tested 4 different methods (all are single SNP analysis) :

- Simple regression
- PCA analysis (Price & al, Nature, 2006)
- QTDT analysis (Abecasis & al, Am J Hum Genet, 2007)
- GRAMMAR (Aulchenko & al, Genetics, 2007)

Decision rules :

- Classic (5%), number of p-values < 5%</p>
- False Discovery rate (FDR,5%), corrected for multiple tests (Benjamini-Hochberg, J.R. Statist. Soc. 1995).

Introduction	Materials & Methods	Results	Discussion & On going
OO	○○●	00	
Tools used for	the simulations		

Historical part : Linkage Disequilibrium with Several Options (LDSO, F.Ytournel 2008)

- Developed to generate data for QTL mapping.
- Simulates the history of a single or two populations.
- Takes into account the evolutionary forces (mutation, selection and bottleneck).
- Obsign part : Extension of LDSO to pedigree
 - Genotypes and phenotypes created (historical part) from LDSO are integrated into the founders of the pedigree.
- Analysis part : Package GenABEL (R, Y.Aulchenko 2008)
 - Quality check, Genomic relationship matrix, polygenic effect
 - Different methods based on linkage disequilibrium

Introd	

Outline

1	Introduction
	Problem
	 Objectives
	Materials & Methods
	Choice of simulations
	Choice of methods
	Tools used
3	Results
	What about regression ?
	And the other methods
	Discussion & On going

イロト イヨト イヨト イヨ

Results

What about regression?

	Inbreeding +			Inbreeding –		
Number of sires	10	60	600	10	60	600
FDR (%)	7.3	3.1	4.0	1.9	0.1	0.1
Classic (%)	25	_	—	-	—	8

Histogram of Inb+/d10

- Strong effect of population structure.
- Strong effect of population design for a small number of sires (10 vs 60).

11/15

Results

And the others methods...

	Inbree	ding +, <i>d</i> 10	Inbreeding -, d600		
False positives (%)	FDR	Classic	FDR	Classic	
Regression	7.3	25	0.1	8	
PCA	5.9	23	0.1	8	
GRAMMAR	0	0.9	0	1.8	
GRAMMAR + GC	0.1	5	0	5	
QTDT	0.02	5	0.002	4.9	

- PCA : (≈ Regression), number of markers too low to distinguish several groups in the PCA.
- GRAMMAR : The distribution of p-values is not uniform and is very conservative.
- GRAMMAR + GC : Distribution of p-values appears to follow a uniform law after correcting by Genomic control.
- QTDT : Same as GRAMMAR+GC without genomic control.

Introduction OO	Materials & Methods	Results 00	Discussion & On going
Outline			

Discussion	& On going		
Introduction	Materials & Methods	Results	Discussion & On going

Discussion :

- Deviation from p-values distribution of a uniforme law appears to be closely related to the occurrence of false positives (the statistical test doesn't follow a χ^2).
- Difficulty of methods to remain robust when there is inbreeding.

On going :

- More simulations with more markers.
- Simulations with QTL(s) to test the power of methods.

Introduction OO	Materials & Methods	Results OO	Discussion & On going
Acknowledge	ements		

GENEQUIN funders :

GENEQUIN partners :

Thank you for your attention !

15/15

Teyssèdre, Ytournel, Dupuis, Denoix, Guérin, Ricard and Elsen

Analyses of LD/LDLA methods under various structure of population