An all-or-none trait to account for pre-selection in Icelandic horse breeding

Elsa Albertsdóttir PhD student

Landbúnaðarháskóli Íslands Agricultural University of Iceland

Department of Land and Animal Resources

Aim of research

- Definition
 - The all-or-none trait 'Test-status'
 - Measurement of amount and trend in pre-selection?
- Estimation of (co) Variance compontents
 - Is there a genetic variation?
 - How does it correlate to other traits under selection?

Þóroddur from Þóroddsstaðir

Introduction: Breeding field-tests

- Breeding field-test scores
 - 16 traits
 - Assessment-scale 5.0-10.0
 - Different weighing factors
 - Total score
 - Price influencing factor
- Selection
 largely based
 on EBV's

- Presentation of horses
 - Unequal between genders
 - ↑ % geldings
 - Unequal preparation

Breeding values

An all-or-none trait to account for preselection in Icelandic horse breeding

Material and methods

www.worldfengur.com

- Breeding field-test data
 - -76 043 horses
 - -born in Iceland 1990-2001

39 443 females

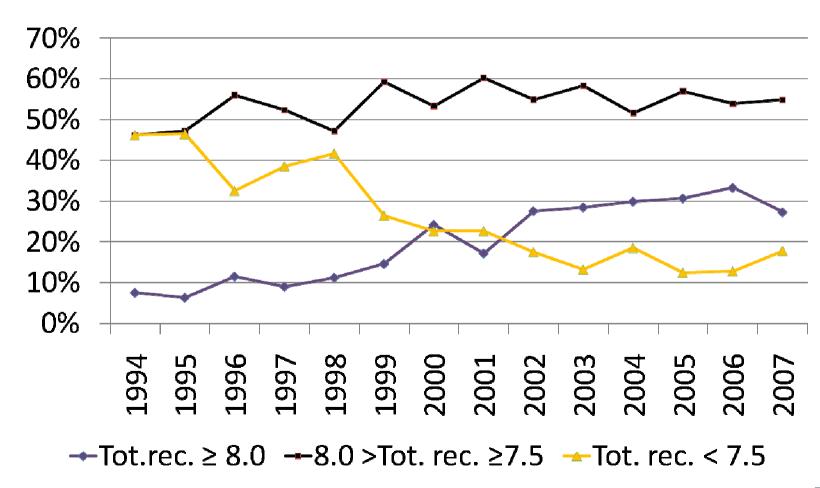
- Breeding field-test scores from 1994-2007
 - -Total of 9102 assessments
 - 18% males + 82% females
 - -7 43 I assessments

19% of all born females

- Pedigree information
 - -103 172 horses
 - -10 generations

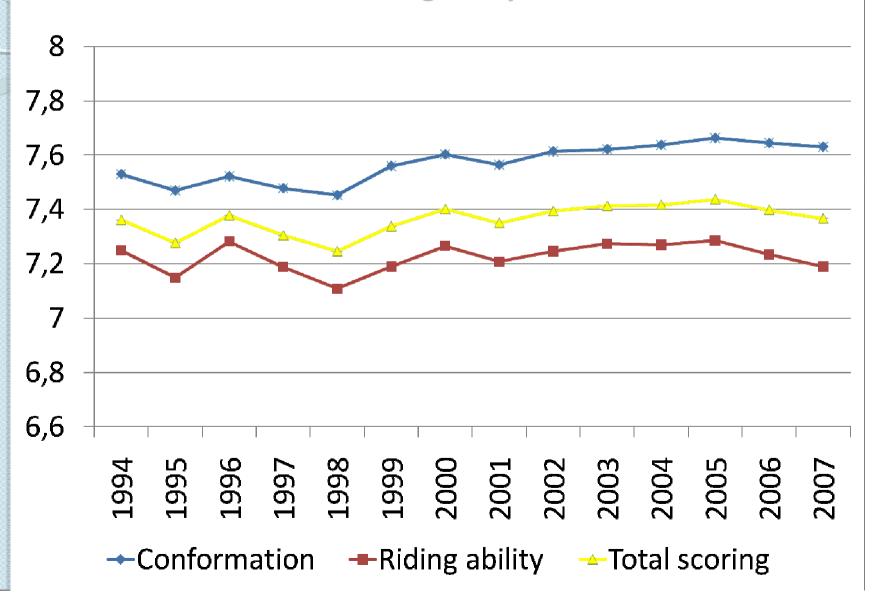
Definition of the Test-status trait

- Threshold trait
 - Horses are assigned values of 0
 - no record
 - Horses are assigned values of I
 - at least one performance record


Reflects it pre-selection?

- Participation at breeding field-tests
 - Is it random?
 - Is it based on the horses assumed potential to score high?

Quality of the mares that attended


Percentage within different quality classes

Average total-score: 7.55 \Rightarrow 8.02


BLUE estimates:

conformation score - ridingability score - total score

- Difference in average scoring: 0.47
 - Average score 1994
 - Average score 2006

- Genetic progress: 0.16
- Pre-selection accounts for: 0.3

Estimation of variance compontents

- Markov Chain Monte Carlo Gibbs sampling DMU package by Jensen and Madsen (2008)
- Linear and threshold models
 - Test-status trait

$$y_{ijk} = birth-year_i + animal_k + e_{ijk}$$

Breeding field-test traits

$$y_{ijk} = year_country_i + age_sex_j + animal_k + e_{ijk}$$

- Univariate and multivariate analyses
 - Residual covariances restricted to 0

Estimated heritatbilities

- 0.66 and 0.71
 - the test-status
- 0.15 0.66
 - the breeding field-test traits

Comparisons of results from MULTII- and UNIVARIATE analyses Estimated heritabilities generally higher

Genetic correlations: test-status vs. breeding field-test traits

- 0.00 0.87
 - o in general
- \bullet 0.00 0.50
 - Traits with lower weighing factors
- ≥ 0.70
 - Traits with the higher weighing factors

Conclusions

- Amount and trend in pre-selection
 - Importance of including test-status
- Genetic evaluation
 - Reduction of selection bias
 - Increased accuracy
- Significant genetic component
 - Inflated to some degree
- Unequal presentation of genders
 - Future incorporation of competition data

Acknowledgements

- Supervisors
 - Þorvaldur Árnason,
 - Professor AUI
 - Susanne Ericsson,
 - Assist. professor SLU
 - Ágúst Sigurðsson
 - Rector AUI

- Grant assistance
 - Foundation for the preservation of the Icelandic Horse
 - Rannís the Icelandic
 Centre for research

