Correlation vs Covariance matrices for rank reduction in test-day models? Session 15

H. Leclerc 1, V. Ducrocq 2

¹ Institut Élevage, Dpt Génétique, F-78350 Jouy-en-Josas ² UMR1313, INRA Gabi, F-78350 Jouy-en-Josas, France (helene.leclerc@inst-elevage.asso.fr)

Models

Fixed effects = Herd x test-day (HTD)

+ Lactation curves (sum of splines) by region x parity for calving age, calving month, length of dry period, gestation

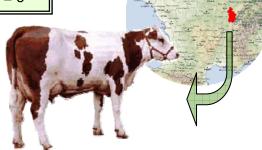
Random effects (full rank = reference)

- Genetic (G)
- rank = 6
- Permanent envt (P)
- rank = 6
- Herd x calving year (H) rank = 9

Residual = heterogeneous variance f(DIM)

VS

Context


Abstr. 38

Genetic evaluation based on Test-Day (TD) model presents many advantages, particularly in terms of modeling of lactation curves but it constitutes a major computing challenge in large dairy countries, due to:

- the number of parameters in the model,
 - the number of records to analyse
 (> 100 millions)

(reduced rank)

- G rank = 4
- P rank = 4
- H rank = 6

Materials

Subset of 2.4 million TD data (Milk, Fat, Protein yields) recorded between 1988 and 2004

135 743 Montbéliarde cows from Jura (East of France). 194 214 animals in pedigree file

Objectives

To reduce computer requirements using a reduced rank approach

- 1/ Impact of rank reduction by 1/3 on estimated random effects?
- 2/ Reduction approach based on covariance (COV) vs correlation (COR) matrix?

Methods

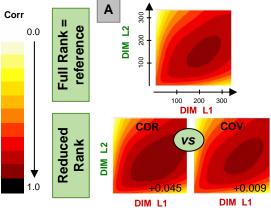
1/ Correlations between random effects obtained with reduced rank model vs reference model (full rank)

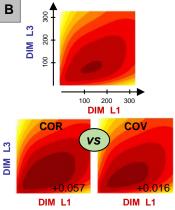
2/ Analysis of differences between COV and COR estimated random effects

Conclusion

1/ Low impact of rank reduction on genetic evaluation ⇒
possible to use rank reduction to
decrease computing requirements

2/ Better relevance of the approach based on the covariance matrix (COV)


Results


Reduced rank approaches imply changes in genetic correlations between Days In Milk (DIM) (Fig) .

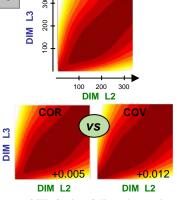

- within lactation changes are negligible (not shown) .
- between lactations changes are larger between 1st and later lactations (A, B) than between 2nd and 3rd (C) and vary depending on the approach (+ 0.05 with COR, + 0.01 with COV).

Table. Correlation between random effects estimated with full rank matrix and with reduced rank matrix (COR or COV)

	Genetic		Permanent Env ^t		Herd-Year	
Approach	COR	COV	COR	COV	COR	COV
Milk	0.974	0.999	0.948	0.999	0.901	0.987
Fat	0.997	0.999	0.989	0.999	0.946	0.995
Protein	0.985	0.999	0.971	0.999	0.915	0.992

Figure. Correlation between DIM in 1st (L1), 2nd (L2) and 3rd (L3) lactation for genetic effects on Milk (using full rank matrix or reduced rank matrix based on **COR** and **COV**).

s study was performed within the frameworl of the UMT on cattle genetic evaluation