

Generalitat de Catalunya Government of Catalonia

GENETIC AND TRANSCRIPTOMIC ANALYSIS OF INTRAMUSCULAR FAT CONTENT AND FATTY ACID COMPOSITION IN TWO PIG MUSCLES

M. Solé¹, R. Pena¹, M. Amills², A. Cánovas¹, D. Gallardo², J. Reixach³, I. Díaz⁴, J.L. Noguera¹, <u>R. Quintanilla¹</u>

¹IRTA Genètica i Millora Animal, Rovira Roure 191, 25198 Lleida (Spain), raquel.quintanilla@irta.cat;

²UAB Departament de Ciència Animal i dels Aliments; ³ Selección Batallé S.A.; ⁴IRTA Tecnologia dels Aliments.

Intramuscular fat content (IMF) and fatty acid composition are key traits influencing the sensory, technological and nutritional properties of pig meat. We have carried out a gene expression and QTL analysis to identify genes involved in the genetic variability of these traits in two muscles (gluteus *medius* and *longissimus dorsi*) from a population of 350 Duroc barrows distributed in 5 half-sib families.

RNA

EXPRESSION STUDY

88 SAMPLES of 68 animals two muscles x two groups

HIGH level of lipid parameters

LOW level of lipid parameters

gluteus longissimus medius dorsi

10

10

34

34

ANOVA (BRB-ArrayTools) Expression=Muscle+Group+e

Gene Ontology Analysis (DAVID) of genes differentially expressed

data

protein folding

mRNA processing

- response to chemical stimulus response to stress
- ribonucleoprotein complex biogenesis and assembly
- ribosome biogenesis and assembly
- RNA processing

RNA splicing

QTL ANALYSIS

- 350 individuals (5 Half-sib families)
- **110** microsatellites
- 15 phenotypes related with -IMF and fatty acid profiles of two muscles QTL express

28	QTL for <i>gluteus</i>	
	medius traits	

26 QTL for longissimus dorsi traits

MAIN CANDIDATE GENES

Trait	SSC	QTL peak	F-value	Chromosome region	Genes differentially expressed
%Myristic	5	94 cM	13.98	chr.5 (88-118 cM)	GPD1 (Glycerol-3-phosphate dehydrogenase 1)
%Vaccenic	6	95 cM	14.56	chr.6 (84-107 cM)	NPC1 (Niemann-Pick disease type 1)
%IMF	7	133 cM	16.48	chr.7 (100-137 cM)	NPC2 (Niemann-Pick disease type 2)

• The expression study allowed us to identify 292 genes differentially expressed between gluteus medius and longissimus dorsi muscles, mainly grouped into GO terms related with muscle development, regulation and function.

• A larger number of genes (459) showed differential expression between the established groups, being most of them overexpressed in animals with HIGH level of lipid parameters, and belonging particularly to GO categories related with lipid metabolism.

• We have detected a number of QTL associated with intramuscular fat content, muscular cholesterol concentration and fatty acid profile of gluteus medius and longissimus dorsi muscles.

• In a preliminary joint analysis of these results, we have selected three positional and functional candidate genes: GPD1, NPC1 and NCP2.