DEVELOPMENT OF A GENETIC INDICATOR OF BIODIVERSITY FOR FARM ANIMALS

B. Villanueva¹, R.M. Sawalha¹, T. Roughsedge¹, E. Rius-Vilarrasa¹, J.A. Woolliams²

> ¹Scottish Agricultural College ²The Roslin Institute

CONVENTION ON BIOLOGICAL DIVERSITY (CBD)

"achieve by 2010 a significant reduction of the current rate of biodiversity loss at the global, regional and national level"

Evaluate progress

Communicate effectively

Need to develop a limited number of indicators of biodiversity Indicators should ...

use existing data sources

 be underpinned by sound scientific knowledge

 be easily understood by both technical and non technical audiences

Livestock genetic diversity

- Important component of biodiversity
- In contrast to wild species:
 selected by humans for centuries ->
 considerable number of breeds
- Partition of diversity within and between breeds → unique
- Previous indicators ignored diversity within breeds

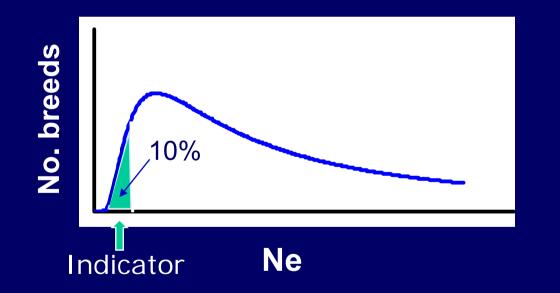
Objectives

1. Identify an indicator of genetic diversity for livestock species accounts for variability within breeds

2. Evaluate the indicator in UK sheep and cattle

1. Indicator proposed

Genetic Variation and Ne


- We can not always measure the genetic variation in all traits of interest
- BUT we can always estimate the average rate of loss in genetic variation
 Related to effective population size (Ne)

$$\Delta V_g = 1/2 Ne \times V_g$$

Falconer and Mackay (1996)

One indicator for each livestock species

- Estimate Ne for each native breed
- Calculate the distribution of Ne

 Find the average Ne for the lower 10% tail of the distribution

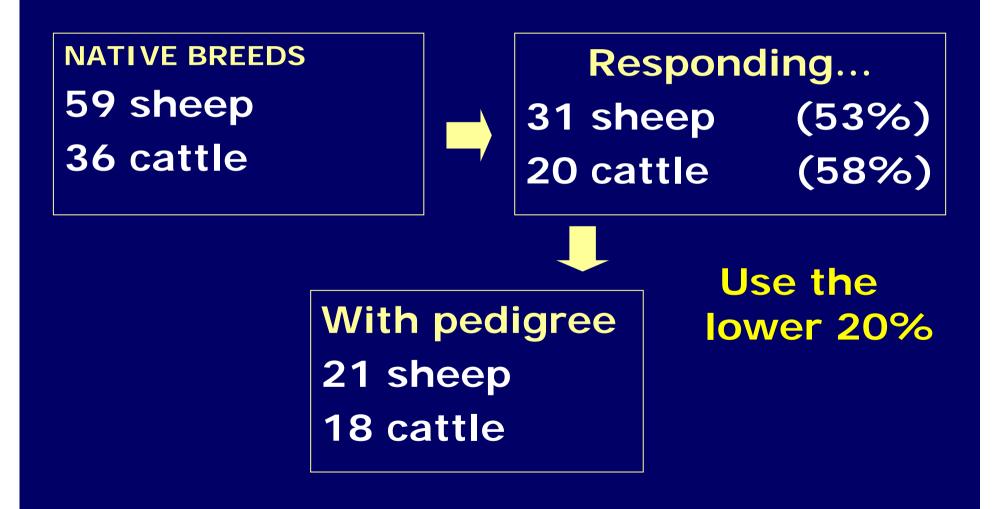
Choice of 10%

UK 59 sheep native breeds
 36 cattle native breeds

- 10% provides a good compromise between
 - giving high weight to breeds most at risk
 - without being too sensitive to events surrounding a single breed

Indicator proposed

- Sensitive to genetic variation within breeds (based on Ne)
- Responds negatively (1) when
 breeds become extinct (Ne = 0)
 when management within breeds deteriorates
- Simply obtained


2. Evaluation of the indicatora. Sheepb. Cattle

Information needed

- Requested to breed societies
 - Breeds with pedigree available
 → electronic copy
 - Breeds without pedigree available
 - → estimates of numbers of parents and proportions selected

Guarantee that breed names will be kept confidential

Responses

Sheep 31 breeds

Chillingham (17)

Swaledale (750,000)

South Devon (11,500)

Estimation of Ne with pedigree

- Equivalent to estimate ΔF ($\Delta F = 1/2$ Ne)
- Method very well established for long and complex pedigrees
 - Compute
 - F for each animal *RelaX2*
 - ΔF per year (ΔF_y)
 - generation interval (L)

• ΔF per generation ($\Delta F = L \Delta F_y$) and Ne = 1/2 ΔF To show temporal trends

Indicator computed in 2 years: 2001, 2007

How many generations to use to estimate Ne in both years?

Regressions using 1, 2, 3 o 4 generations back for a particular year

Estimation of Ne without pedigree

- From predictive equations
- Breeds not artificially selected (e.g. Chillingham)
 Ne = 4N_mN_f/(N_m+N_f)

Falconer and Mackay (1996)

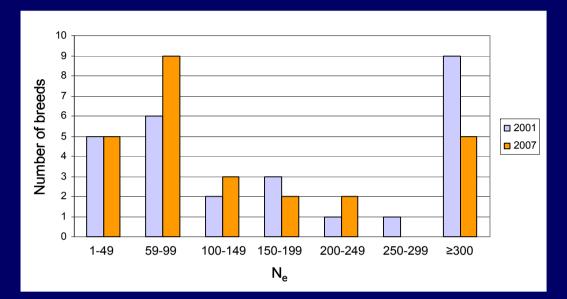
- Other breeds
 - Selection
 - Based only on phenotypes of candidates
 - $h^2 = 0.4 \rightarrow conservative$

Daetwyler et al. (2007)

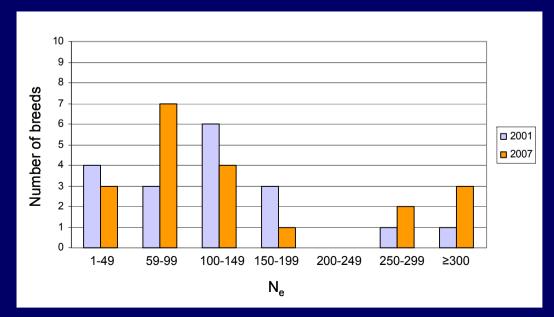
Estimation of Ne without pedigree

 Prediction of ∆F (y Ne) for populations with overlapping generations under mass selection

Bijma, van Arendonk, Woolliams (2000)


- h^2 ($h^2 = 0.4$)
- Number of breeding animals per year
- Minimum and maximum breeding ages
- Proportion of breeding animals that remain in the flock/herd next year
- Average total number of offspring per dam surviving at breeding age

Estimation of Ne without pedigree


Information for 2007

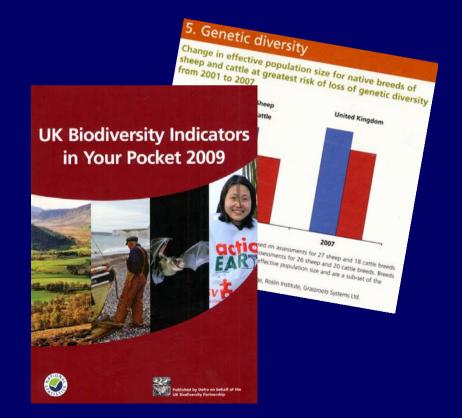
- Responses from societies
- Expert opinion
- Information for 2001
 - Number of breeding females
 - UK Country Report (Defra 2002)
 - Responses from societies
 - Mating ratio and other parameters: assumed same as in 2007

Distributions of Ne

sheep

cattle

Sheep		Ve	
breed	2001	2007	
1	14	25	
2	29	38	
3	35	47	
4	36	30	2001:
5	48	61	36.3
6	56	122	
7	63	98	2007:
8	79	61	40.8
9	86	93	
10	91	44	
11	96	96	Not significant
12	112	83	
•	•	•	
•	•	•	


Cattle	Ne		
breed	2001	2007	
1	10	10	
2 3	16 34	24 36	0001
4	42	65	2001:
5	71	97	25.5
6	73	82	2007:
7 8	78 107	112 82	33.8
9	110	118	
10	113	97	Significant
•	•	•	(P<0.05)
	•	•	

Conclusions

- Indicator developed
 - Measures status and trends of genetic diversity in farm animals
 - Presents change in genetic diversity in native breeds, as measured by their Ne
 - Sensitive to events in breeds most at risk of disappearing
 - Insensitive to events in breeds where Ne remains high

Conclusions

 Increase observed from 2001 to 2007 in sheep and cattle but only significant in cattle

Thanks to

 Defra (Department for Environment Food and Rural Affairs)

Breed societies, Rare Breeds Survival Trust

Grassroots Systems

 Mark Stevenson, Mike Roper, James Williams, Bill Hill, Miguel Toro