Demonstration of inbreeding control

Theo Meuwissen

Norwegian Univ. Life Sciences

Introduction

- Why control of inbreeding (F)?
 - Control the loss of genetic variation
 - Loss of future selection opportunities
 - Control of inbreeding depression on functional traits
 - Towards: sustainable breeding schemes
- How: Optimal Contribution (OC) selection
 - Proven optimal
 - How much ΔG does it costs: none
 - can achieve >30% more gain at equal ΔF
 - Endangered breeds: essential to manage F

However, OC has still limited uptake:

- Technically complicated: need trained staff
- Results in fraction of matings per candidate
- Not well adapted to practical circumstances
 - Multi-tier selection
 - Multi-stage selection
 - Restrictions on number of matings: 0, 1, 2,...
 - How to control no. of matings at local farms?

- To demonstrate the use of OC in the practical case of Eastern Finn Cattle (EFC)
- EFC is endangered breed:
 - main aim: minimise ΔF
 - Also: maximise ΔG while controlling ΔF
- Using GENCONT software
 - Freely available: jack.windig@wur.nl

EFC data:

- Received from Asko Maki-Tanila
- 9913 animals in pedigree (back to 1940)
- 2575 animals were available for selection
- 2480 were younger than 14 yrs
 - Data set being used
- Current population size ~600 breeding cows
 - Need to select ~300 cows to breed replacements

History: relationship and F of EFC

6

• ∆F=0.18%/yr

Missing Pedigree

• Important to account for it:

- Assume unknown parents are a sample from contempories
- Instead of assuming they are unrelated founders
- However: GENCONT assumes the latter

9 www.ekslir.on.ur. true. trubal and true.

Minimisation of A (and F)

Generations:	discrete	overlapp
Average A (%)	1.2	1.8
Nsires	134	36
Ndams	300	300

– Average A:

- Discrete: average relat. of newborns
- Overlap: average relat. of 'breeding pop.' incl. newborns
- Discrete & overlap give different answers

Distrib. of contributions over age

HIVERSITY OF SIZE

Maximise ΔG whilst restricting ΔF

Option in GENCONT 'constraint deltaF':

- Sets constraint_A = $\overline{A} + (2 \overline{A})\Delta F \approx \overline{A} + 2\Delta F$
- $-\Delta F =$ desired rate of inbreeding
- Gencont calculates \overline{A} of candidates
 - Candidates often more related than population
 - Family structure often very uneven

$$-\overline{A} >> A_{min}$$

- Here: $\overline{A} = 4.4\%$; $A_{min} = 1.8\%$

Solution : use 'constraint relationship'

- Calculate minimum A using Gencont (1.8%)
- Set constraint to $0.0184+2*\Delta F/L = 2.12\%$
 - $\Delta F = 0.01$ (desired rate of F per generation)
 - L = 7 years (generation interval)

- Note: in ongoing opt. contrib. selection:
 - the base A (1.8%) equals the constraint used in the previous year
 - Thus: chosing base A is only a startup problem

Generations:	discrete	overlapp
Average EBV	1.67	1.67
Average A (%)	1.2	1.8
Nsires	128	38
Ndams	300	300

– AverageA(solution) < constraint on A</p>

- Due to discrete number of dams required
- Solution is similar to minimise solution
 - Here: many EBV unknown & set to 0 (= popul. mean)

w.umb.no

Distrib. of contributions over age

Set up semen bank

Aim of semen bank

- Store a back-up population that conserves ancestral variation as much as possible
- In GENCONT language:
 - Consider only males as candidates
 - Minimise A of stored semen
 - Add to existing contributions of males to bank
 - Adapt current contribution to existing bank
 - No overlapping generations: set up one back-up population

Add/adapt to existing semen bank

- Currently stored semen doses were provided by Asko
 - 61,654 straws
- Assumed that we want to add 38,346 straws
 - Total: 100,000 straws
 - So new contribution = 38 % of total bank
- Use 'Cprev' option in Gencont:
 - defines for every sire his previous contribution to the bank

Results

Set-up bank:	de-novo	add
Average A (%)	1.2	4.5
Nsires	255	74

- Although 'additional' contribution high (38%): averageA is much increased
- De-novo set up requires sampling of 3-4 times more bulls

Distrib. of contributions over age

Conclusions

Gencont seemed able to optimise contrib's

- Minimise ΔF
- Maximise ΔG and constrain ΔF
- Optim. contributions to (existing) gene bank
- Given the imposed restrictions (select 300 dams)
- missing pedigree: assumed unrelated founders
 - might have affected the results presented
- Don't use 'constrain deltaF' option
 - Directly set constrain on relationships

Conclusions (2)

- Have to account for overlap. generations:
 - Solutions differ
 - Overlap: somewhat longer generation interval
- Here: min. A and max. G solution similar
 - Probably due to many EBV=0
 - possible to find solutions with little ΔF and ΔG
- Setting up semen bank:
 - De-novo may give considerably lower relationsh.
 - Use of existing bank: considerably less sampling

