

Session 13 No 3 - 24 Aug 2009

Software tools for management of genetic variation

Asko Mäki-Tanila

MTT Agrifood Research Finland, Jokioinen

Asko.Maki-Tanila@mtt.fi

Towards self-sustainable European Regional Cattle breeds

Ihab Shaat & Ismo Strandén / MTT, Jokioinen, Finland

Jesus Fernandez & Miguel Toro / INIA & UPM, Madrid, Spain

Theo Meuwissen, UMB, Ås, Norway

Data from FABA Breeding / Anna Oksa & Jouni Laurila

Approach in two stages:

-describing the present state (and history)

-maintenance of variation (Theo Meuwissen)

Measures of diversity

- proportion of variable loci
- expected vs observed heterozygosity
- number of alleles per locus (long-term potential for selection)

Satisfactory genomic assessment still expensive

Genomic tools are powerful in detecting (long-term) changes admixtures bottlenecks population expansions selection etc

Parameters based on *pedigree* give a cheap and holistic picture

Inbreeding coefficient related to mean Coancestry measures drift and changes in variance

Inbreeding is unavoidable.

- therefore the estimates depend on the depth of pedigree recording

Examples on Finncattle breeds

Eastern, Northern and Western Finncattle Societies formed around 1900

Ayrshire importation since 1850

Finncattle breed societies fused together in 1947 Systematic policy to replace Finncattle with Holstein-Friesian since 1960 Revival of Finncattle breeds in the 1980's

Maijala 1998

Herdbook registered bulls

Maijala 1998

Western Finncattle – level of inbreeding

BETTER CONCEPT:

Proportional increment or rate of inbreeding ($\Delta F = 1/2 N_e$)

- stays constant over generations
- useful parameter for comparing populations (or phases in population history)

Effective population size N_e depends mainly on the number of parents used to produce the next generation

Existence of pedigree recording essential!

Western Finncattle – declining population

changes in popularity of herd book registration

Consider the demographic information

-number of male (N_m) and female (N_f) parents

$$N_{e} = \frac{4 N_{m} N_{f}}{N_{m} + N_{f}}$$

The small male number determines the effective size - *especially number of AI bulls*

ENDOG program to compute Ne and respective parameters http://www.ucm.es/info/prodanim/html/JP_Web_archivos/endog45.zip

Gutierrez & Goyache (2005) JABG 122: 172-176

Also resorted to **RelaX2** <u>Ismo.Stranden@mtt.fi</u>

Strandén & Vuori (2006) 8th WCGALP

considering the population with 6 y windows

Some parents have more offspring than others because of better performance (selection) popular breed features etc.

Essentially we have less parents and have to consider variation in progeny number

Uneven representation (selection advantage) of families *inherited over generations*

Estimation of proportional increment of inbreeding level F

$$\Delta F = \frac{F_t - F_{t-1}}{1 - F_{t-1}}$$

or similarly we could compute the changes in coancestry (or ½ additive relationship) (more stable and gives early signals about undesirable trends)

 \rightarrow we need

separation of generations and the intervals between inbreeding coefficients F (or pairwise coancestry of two individuals or relationship matrix A)

lots of methods to compute F

Wright's path method (Colleau, GENUP, PEDIGREEVIEWER)

tabular method (used in BLUP; e.g. Meuwissen; *A* given by EVA, ENDOG, PEDIG)

other methods: contribution, gene dropping

easy to compute \rightarrow often the only parameter presented

Pedigree completeness in Western Finncattle

Some animals have pedigree information over higher, some over lower number of generations information from > 3 equivalent generations

generation intervals in Western Finncattle

	all	<u>≥</u> 3 gen	<u>≥</u> 4 gen	<u>≥</u> 5 gen
animals	249 444	74 341	51 682	34 528
sire → son	7.8	8.0	7.8	7.9
sire → daughter	7.2	7.0	7.1	7.2
dam → son	7.2	5.2	4.6	4.4
dam → daughter	4.8	4.3	4.1	3.9

information over <a>> 3 equivalent generations average relatedness (pairwise coancestry & inbreeding)

N_e varies 50-1300 – harmonic mean over gen's 171

Overlapping generations and shallow pedigrees

Because at generation t the level of inbreeding is $F_t = 1 - (1 - \Delta F)^{t-1} = 1 - (1 - 1/2N_e)^{t-1}$

1) N_e is log regr of $(1 - F_t)$ on birth date / generation interval (Perez-Enciso 1995)

2) for individual i we have $\Delta F_i = 1 - \frac{t-1}{\sqrt{1-F_i}}$

and average $N_e = 1 / 2$ average ΔF (González-Recio et al 2007; Gutiérrez et al 2009))

For Western Finncattle 1) $N_e = 89$ and 2) $N_e = 109$

Northern Finncattle

Photo: MTT

15,408 animals in the pedigree

without requirements for the amount of information estimates of N_e around 40-50

Conclusions

Pedigree recording, registers/databases and their utilisation produce very rewarding results

When pedigree information is missing, we can rely only on herd information

Al is an extremely powerful tool

- Northern Finncattle oldest bull from 1983 semen stored only from 4 bulls in '80's
- Western Finncattle 8 bulls from 1960's 35 bulls from 1970's etc.

...conclusions

ENDOG software

- free and very detailed and useful manual and support
- efficient pedigree checks

-emphasis on useful concepts ΔF , N_e, pedigree completeness, depth, overlap...

- several options for estimation to get a desired answer
- requires computer skills (ACCESS) (no renumbering)
- possible improvements

addition of rows (and birth date) for parent individuals without pedigree coancestry measure, var of family size age distribution of progeny from AI bulls pedigree completeness measure (MacCluer et al 1983)