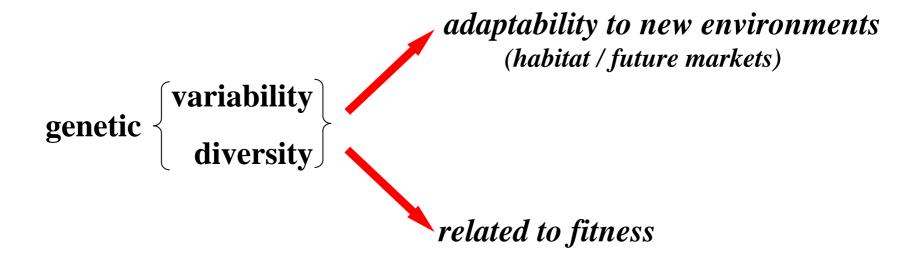
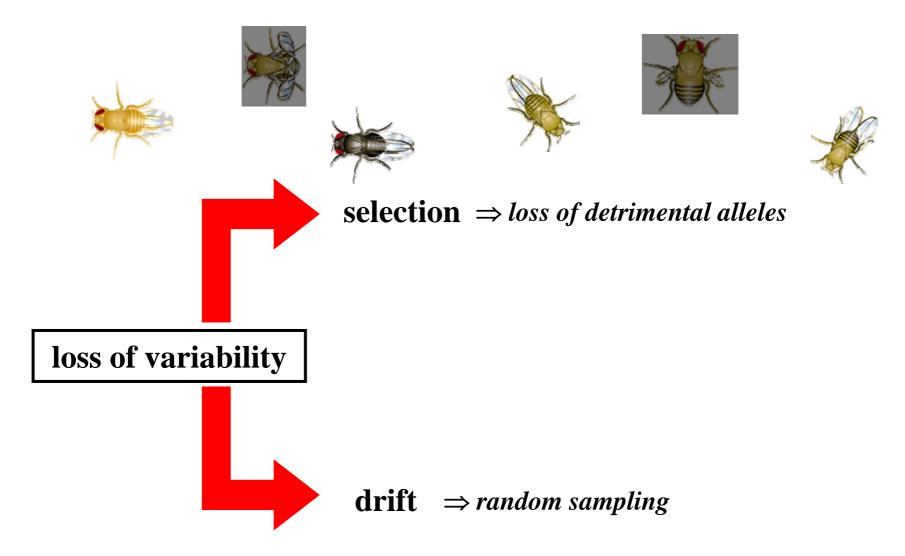
S13.1 E-mail: jmj@inia.es

Management strategies for inbreeding control in unselected and selected populations

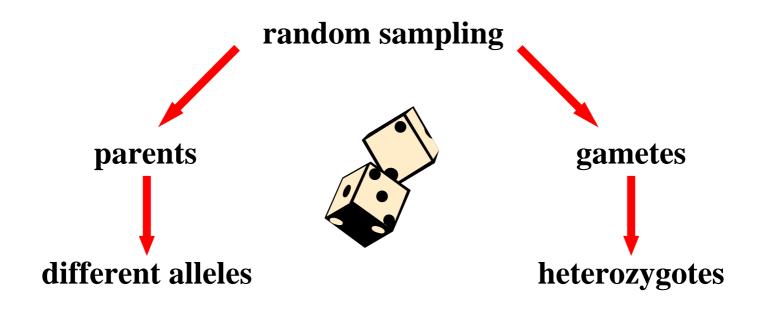
Jesús Fernández


Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid (Spain)

Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria

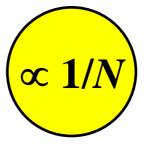


Gary Larson



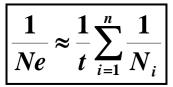
short-term: inbreeding depression

long-term: accumulation of deleterious mutations loss of evolutionary potential



Genetic drift

Variation of allelic frequencies



Increase of inbreeding (F)

Effective population size (Ne)

 $\Rightarrow \text{ ideal population with the same} \begin{cases} \Delta F \\ \Delta V(q) \end{cases}$

fluctuating population size

biased sex ratio

$$\frac{1}{Ne} = \frac{1}{4N_f} + \frac{1}{4N_m}$$

differential contributions

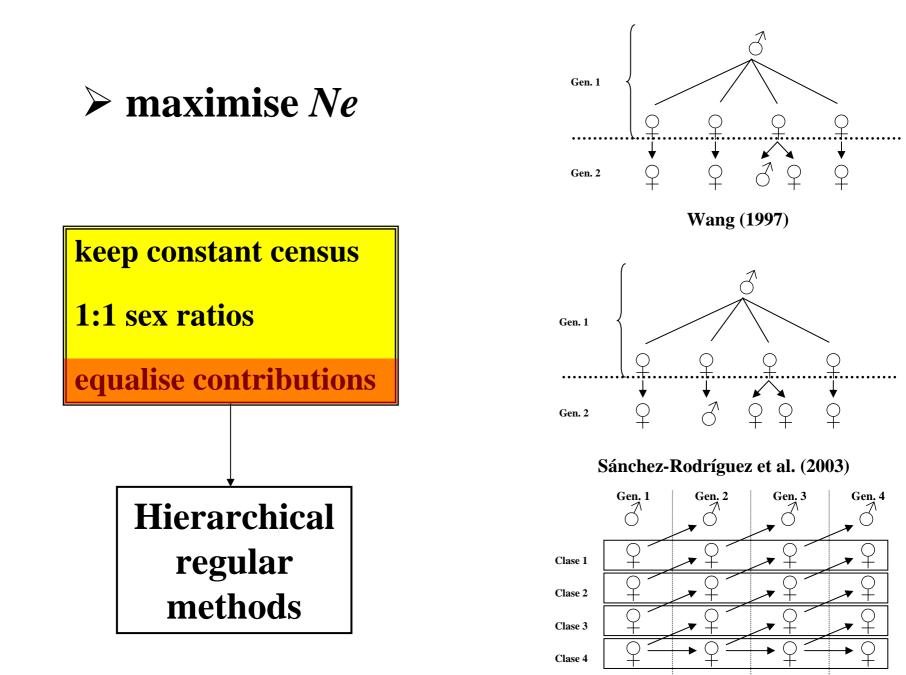
$$Ne \approx \frac{4N}{2+S_k^2}$$

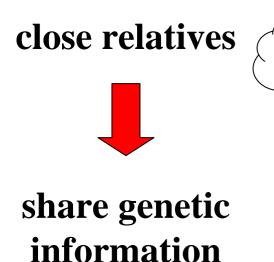
Recommendations:

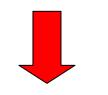
ESTIMATION OF Ne

✓ demographic data

✓ pedigree analysis
$$\Delta F = \frac{1}{2Ne}$$


- ✓ molecular data
 - > fluctuation of allelic frequencies
 - decrease in heterozygosity
 - amount of linkage disequilibrium

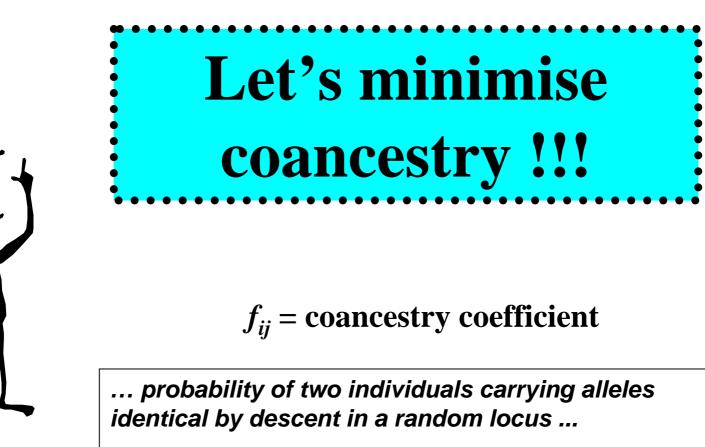

Genetic management of a population


two decisions to take:
 which individuals reproduce? 1
 how they mate?

SELECTION

CONTRIBUTIONS

low diversity



mating between relatives

increase of inbreeding

inbreeding depression

Malecot (1948)

 \Rightarrow from pedigrees or from markers

overrepresented individuals are penalised

loosely related individuals are favoured

Ballou & Lacy (1995)

OPTIMAL

CONTRIBUTIONS

$$\min \sum_{i=1}^{N} \sum_{j=1}^{N} c_i c_j f_{ij}$$

- \checkmark equalises ancestral contributions
- ✓ maximises *Ne*
- ✓ maximises gene diversity (Exp. Het.) f = 1 GD

$$\checkmark$$
 minimises ΔF

$$\Delta F = rac{1}{2Ne}$$

✓ flexible and robust

Animal Breeding \Rightarrow selection

 \Rightarrow improving a particular trait

$$\Delta \mathbf{G} = \mathbf{i} \, \rho_{\mathsf{AC}} \, \sigma_{\mathsf{A}}$$

$$\begin{array}{l}\uparrow i \implies \uparrow \varDelta G \ , \uparrow \varDelta F \\ \uparrow \rho \implies \uparrow \varDelta G \ , \uparrow \varDelta F \end{array}$$

Inbreeding / Genetic diversity

- Decrease importance of relatives' information
 ✓ Inflated heritability
 - ✓ Suboptimal familiar indices

- > Allow for differential contributions
 - ✓ proportional to breeding value
 - \checkmark more selected \Rightarrow same *i* with more *Ne*

OPTIMAL CONTRIBUTIONS

(Wray & Goddard 1994, Meuwissen 1997)

$$\max \left(\sum_{i=1}^{N} c_{i} EBV_{i}\right)$$

contributions proportional to breeding value ...

s.t.
$$\left(\sum_{i=1}^{N}\sum_{j=1}^{N}c_{i}c_{j}f_{ij}\right) \leq F_{t+1}$$

... but also to average relationship

Genetic management of a population

two decisions to take:
 which individuals reproduce?
 how they mate? 2

less important than selection

 \Rightarrow little margin for improvement

➤ Factorial mating

- ✓ several partners per individual
- \checkmark HS families instead of FS families

Compensatory mating

✓ mix overrepresented lineages with rare ones

> Minimum coancestry mating

- \checkmark avoid mating between close relatives
- \checkmark delays inbreeding (but not ΔF)

CRYOCONSERVATION

✓ use of post-reproductive individuals

✓increases census

✓ increases generation interval

✓ reduces drift

✓ *Ne* is a key parameter

 \Rightarrow management and monitoring

- ✓ OC controls the rise of inbreeding
 - \Rightarrow with and without selection
 - \Rightarrow also reduces loss of diversity
- \checkmark mating less important than selection
 - \Rightarrow but *mcm* could be advisable