60th Annual meeting of the European Association for Animal Production Barcelona, 24-28 August, 2009

Assessment of Breeding Strategies in Genomic Breeding Programs

Sven König¹, Hermann H. Swalve²

¹Institute of Animal Breeding and Genetics, University of Göttingen, Germany ² Institute of Agricultural and Nutritional Sciences, University of Halle, Germany

Today's dairy cattle breeding programs

- 1. Shift from production to functionality in the overall breeding goal
- 2. Shift from indicator traits (e.g. SCS, conformation....) to the traits of interest (e.g. mastitis, hoof disorders....)
- 3. Genomic breeding values (GEBVs)

Aim of the study

To evaluate selection strategies in genomic breeding programs with a focus on improving functional (health) traits

How to collect functional traits?

 On bull dams (BD) kept on station Examples in Germany: Donor test station in Osnabrück (since 1988)

Station in Karkendamm (since 2001)

Progeny testing (PT)
 Examples in Germany:
 Large-scale dairy farms in East Germany

Do we need BD-Testing and PT in the genomic era?

Evaluation of genomic breeding programs via selection index theory (Dekkers, 2006)

$$b = \mathbf{P}^{-1}\mathbf{G}w$$

Evaluation criteria

$$r_{TI} = \frac{\sigma_I}{\sigma_T} = \sqrt{\frac{b'Gw}{w'CW}}$$

$$RSR = \frac{\Delta G_{\text{without SNP information in the index}}}{\Delta G_{\text{including SNP information in the index}}} *100$$

Formulae to set up the necessary matrices

(Lande and Thompson, 1990; Falconer and Mackay, 1996)

$$h_m^2 = 1 ag{1}$$

$$\sigma_m = r_{mg} * \sigma_a$$
 [2]

$$\boldsymbol{\sigma}_{am} = a_{ij} * r_{mg}^2 * \boldsymbol{\sigma}_a^2$$
 [3]

Scenario I

genotyped BD (marker m), own performance of BD (y)

$$\mathbf{P} = egin{bmatrix} oldsymbol{\sigma}_y^2 & oldsymbol{\sigma}_{am} \ oldsymbol{\sigma}_{am} & oldsymbol{\sigma}_m^2 \end{bmatrix}$$

$$\mathbf{G} = egin{bmatrix} oldsymbol{\sigma}_a^2 & oldsymbol{\sigma}_{am} \ oldsymbol{\sigma}_{am} & oldsymbol{\sigma}_m^2 \end{bmatrix}$$

$$\mathbf{w} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Scenario I: Results in terms of r_{TI}

Scenario II

genotyped sire (marker m), daughter performances (y)

$$\mathbf{P} = \begin{bmatrix} \frac{\left(1 + (n-1) * 0.25 * h^2\right)}{n} \sigma_y^2 & 0.5 \sigma_{am} \\ 0.5 \sigma_{am} & \sigma_m^2 \end{bmatrix}$$

$$\mathbf{G} = \begin{bmatrix} 0.5\sigma_a^2 & 0.5\sigma_{am} \\ \sigma_{am} & \sigma_m^2 \end{bmatrix}$$

$$\mathbf{C} = \begin{bmatrix} \boldsymbol{\sigma}_a^2 & \boldsymbol{\sigma}_{am} \\ \boldsymbol{\sigma}_{am} & \boldsymbol{\sigma}_m^2 \end{bmatrix}$$

$$\mathbf{w} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Scenario II for 50 daughters: Results in terms of r_{TI}

Scenario II: No. of daughters required to achieve a pre-defined r_{TI}

	Accuracy of GEBV (r _{MG})							
	r _{MG} =0.5		r _{MG} =0.7		r _{MG} =0.9		only daugthers	
h ²	r _{TI} =0.8	r _{TI} =0.95	r _{TI} =0.8	r _{TI} =0.95	r _{TI} =0.8	r _{TI} =0.95	r _{TI} =0.8	r _{TI} =0.95
0.01	581	3561	330	3310	0	1993	710	3694
0.05	115	705	65	656	0	395	141	732
0.10	57	348	32	324	0	195	70	361
0.15	38	230	21	213	0	129	46	238
0.20	28	170	16	158	0	95	34	176
0.25	22	134	13	125	0	75	27	139
0.30	18	111	11	103	0	62	22	115
0.35	16	94	9	87	0	53	19	97
0.40	13	81	8	75	0	45	16	84
0.45	12	71	7	66	0	40	15	74
0.50	11	63	6	59	0	35	13	65

Scenario III

own performance of BD for 2 traits (MILK, CTFS) genotyped BD for 2 traits (MILK_M, CTFS_M)

$$h_{MILK}^2 = 0.30$$
 $h_{CTFS}^2 = 0.05$ $r_{p_{MILK:CTFS}} = -0.20$ $r_{g_{MILK:CTFS}} = -0.20$ $r_{MG_{MILK}} = 0.8$ $r_{MG_{CTFS}} = 0.5$

$$\mathbf{w} = \begin{bmatrix} w_{MILK} \\ w_{MILK_M} \\ w_{CTFS} \\ w_{CTFS_M} \end{bmatrix} = 0$$
 variation
$$= 0$$

Scenario III: Results

Breeding strategies

Traditional breeding scheme: 4-paths of selection (Robertson and Rendel, 1950)

James M. Rendel 1915 - 2001

- 1. CS
- 2. CD
- 3. BS
- 4. BD

Alan Robertson 1920 - 1989

Bull dam selection: production

- efficient selection tools (conventional EBVs)
- EBVs have sufficient reliability
- practical BD selection is focussed on production

"true BV for production" below the 5% threshold "true BV for production" above the 5% threshold

Bull dam selection: functional traits

- limited selection tools
- EBVs have low reliability
- practical BD selection is focussed on production

"true BV for functionality" below the 5% threshold "true BV for functionality" above the 5% threshold

Alternative in the genomic era 2-pathway selection strategy

Comparison in terms of ΔG with:

4-pathway genomic breeding program (Schaeffer, 2006)

Modification of Schaeffer's GBP

Parameters to calculate ΔG

Pathway of selection	Replacem.	Sel. intensity	Accuracy	Gen. int.
	(p in %)	(i)	(r _{TI})	(L)
4-pathway program				
BS	5	2.06	0.75	2.1
CS	10	1.40	0.75	2.1
CD	80	0.35	0.50	5.5
BD (step 1)	varied	varied	0.50	2.0
BD (step 2)	50	According to	0.75	2.0
		Fewson (1976)		
2-pathway program				
CD	80	0.35	0.50	5.5
Male calves	varied	varied	0.75	2.1

ΔG : 2-paths vs 4-paths

Conclusions: Improvements for functional traits

 There is no need for a central station test for BD in the genomic era

2. Genotyped bulls still need daughter performances

→ setting up of co-operator herds for PT

 Two-path selection strategy is an alternative when costs for genotyping decrease
 BOs are involved in trading of male slaughter cattle