marinus.tepas@wur.nl

# Biomarker development to improve dry cured ham quality

Marinus te Pas, Els Keuning, Rita Hoving-Bolink, Arjan Hoekman, Maria Hortos\*, Alejandro Diestre\*\*, Gary Evans\*\*, Leo Kruijt

Animal Breeding & Genomics Centre \*IRTA, Spain; \*\* PIC, UK







#### Introduction

- Improving pork quality is a major aim in pig breeding
- Special products like dry cured hams are high price / high quality products
  - Deviating qualities are expensive for producers
- The proteome is a major constituent of meat
- Changes in the proteome will affect meat quality
  - -> Proteomic Biomarkers may predict pork quality



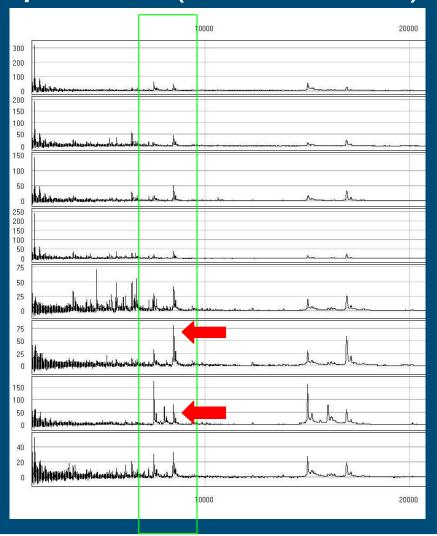
## Biomarkers: Why and How

- To Monitor and Predict Biological processes
- Difficult or Expensive to measure Biological processes
- Easy and Cheap measurable molecules
- Can be used to direct industrial processes

#### Aim of the study

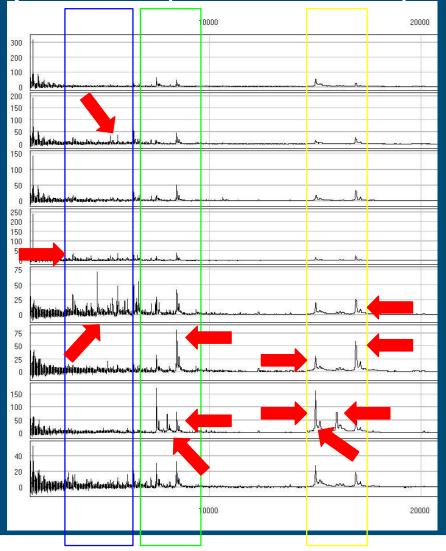
- Develop Proteome biomarkers that monitor and predict:
  - Pork quality in general
  - Ham quality in advance of processing the ham
- Help the industry to select to best hams to reduce costs and improve overall dry cured ham quality

#### Experimental design


Investigate the relationships between proteome profiles and meat quality

#### Material:

- 2 batches (N=70 each) of pigs with terminal Duroc sire
  - Increase the IMF (food) for high quality dry cured ham
- 2 independent producers each batch
- Measure: Carcass lean, FOM, pH, drip loss, IMF (GM)
- Sample: LD




# Proteomics profiles (SELDI-TOF): Example





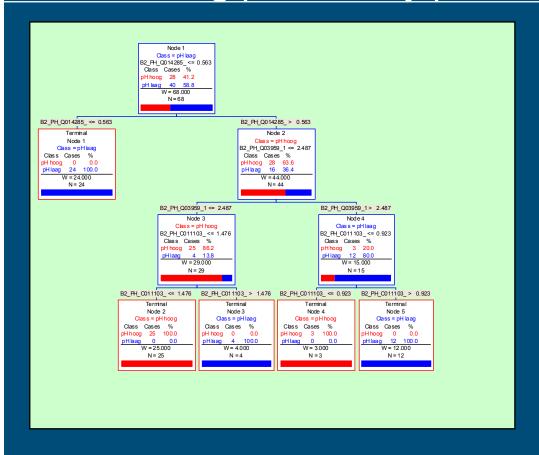
Proteomics profiles (SELDI-TOF): Example

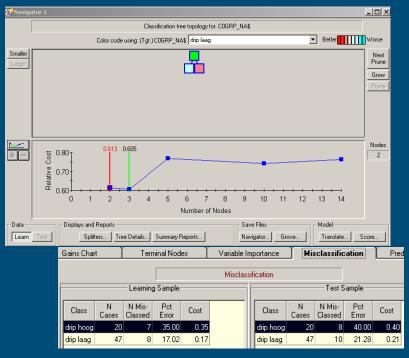




#### Associations between peak height and meat quality traits

| Trait        | Peak (M/Z) | P (batch 1) | Sensitivity | Specificity | P (batch 2) | Sensitivity | Specificity |
|--------------|------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Drip-loss    | 8474       | 0.016       | 82          | 55          | 0.005       | 72          | 36          |
|              | 17017      | 0.00069     | 92          | 44          | 0.0028      | 96          | 50          |
|              | 9627       | 0.037       | 88          | 40          | 0.043       | 74          | 33          |
| IMF G medius | 13888      | 0.012       | 45          | 56          | 0.026       | 62          | 69          |
|              | 3903       | 0.02        | 47          | 61          | 0.04        | 76          | 65          |
|              | 12960      | 0.008       | 51          | 63          | 0.049       | 65          | 68          |
|              | 10159      | 0.013       | 53          | 64          | 0.007       | 67          | 56          |
| pH24         | 8474       | 0.003       | 66          | 82          | 0.00058     | 66          | 81          |
|              | 21697      | 0.028       | 75          | 45          | 0.048       | 73          | 68          |
|              | 16646      | 0.04        | 71          | 46          | 0.02        | 46          | 79          |
|              | 6132       | 0.047       | 67          | 52          | 0.033       | 72          | 70          |
|              | 12482      | 0.048       | 54          | 41          | 0.000039    | 50          | 71          |
|              | 4256       | 0.011       | 66          | 51          | 0.000012    | 67          | 88          |
|              | 3963       | 0.003       | 85          | 31          | 0.000017    | 56          | 81          |
| Carcass lean | 6108       | 0.42        | 63          | 34          | 0.000012    | 77          | 35          |





#### Combining peaks may provide better biomarkers

- If sensitivity and / or specificity is low
- Two peaks may be better than one
- Biomarker Patterns Software package
  - Start with a peak
  - Investigate the improvement of combining with a second peak, third peak, ......
  - Make a tree



#### Combining peaks may provide better biomarkers







#### Discussion: How can we use these data?

- Biomarker development
  - What is needed to develop the biomarker from these data?
    - Identification of peak
    - Fast, cheap test development
    - Validation in other datasets / other commercial environments
    - Proof of concept in industrial environment
  - ...
- Improve the selection of the best hams before processing



## Conclusion - summary

We developed potential biomarkers

We started the road ahead to develop commercially interesting biomarker tests



### <u>Acknowledgement</u>

- EU and Dutch Agricultural Ministry for funding
- Q-Porkchains colleagues for valuable discussions

