Impact of biofuel production from cereals on the European pig and poultry sectors

> Brendan Lynch Teagasc Moorepark Research Centre Fermoy Ireland

EAAP Annual meeting 2009, Barcelona. Session 03 Brendan.Lynch@teagasc.ie

# **Biofuels Global Production**

- Bioethanol 75bn litres in 2008 (US 45%, BR 35%)
- Biodiesel 12 bn litres in 2008 (EU 65%)
- Use of feeds for biofuel increases feed prices
- Negative impact on livestock producers and the consumer
- Net energy gain of biofuels is low
- Expansion of biofuels is driven by subsidies and mandatory blending

# Overview of EU biofuel market

- C. 8.0\*mt biodiesel and 3.0mt ethanol
- Bioethanol Germany 30%, Spain 25%, France 20%
- Biodiesel Germany 35%, France 25%
- Expansion of biofuels may cause change in cropping less cereals, more rapeseed

# **Biofuel and EU feed prices**

- Without mandatory blending (MB) of biofuels real world prices for agricultural products will continue to decline
- MB could increase oilseed prices by almost 20% and cereals by 5% in 2020 Banse et al. 2008

#### **Projections for EU cereal market**

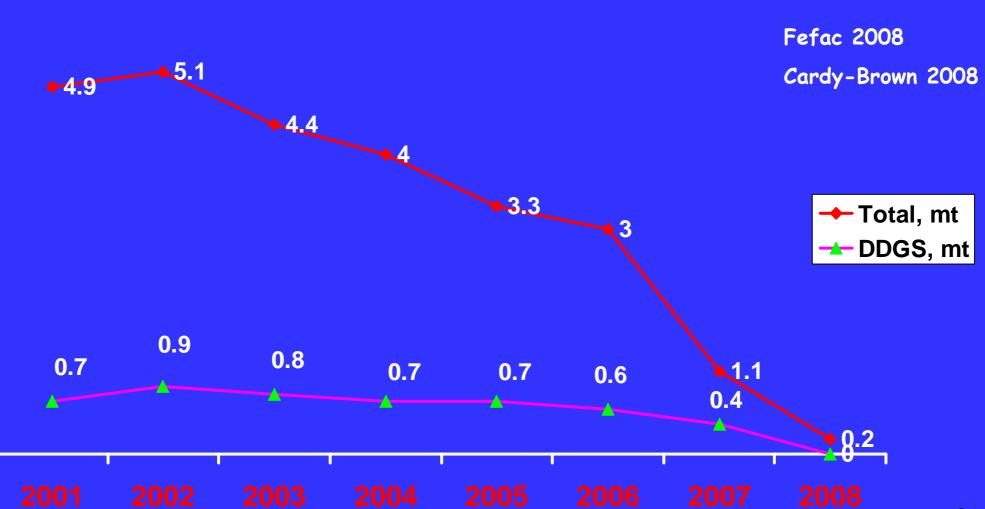
|                   | 2007 | 2008 | 2010 | 2014 |
|-------------------|------|------|------|------|
| Production, mt    | 256  | 294  | 294  | 306  |
| Bioenergy use, mt | 2    | 5    | 6    | 18   |
| Bioenergy, %      | 1    | 2    | 2    | 6    |

(Marouby & Gaudre, 2009) <sup>5</sup>

# Cereal to ethanol process

- DDGS = cereal minus most starch
- Cereal feedstock:
  - Ethanol
  - Carbon dioxide
  - DDGS
  - Approx equal amounts of each

# Main sources of DDGS


- Maize US
- Wheat EU, Canada
  - Barley
  - Sorghum
  - Blend of cereals

# **Overview of US DDGS**

- · C. 30mt. produced per year
- Most fed to ruminants
- Increasing use by pigs
- Delays in GM authorisation are limiting
   EU imports

UMN website 2007

#### EU imports of maize byproducts



# Will DDGS supply continue ?

- Political decisions may affect industry
- High oil prices will encourage biofuel production
- How much can US livestock use ?

# Effect of policy changes

- Biodiesel is more efficient than bioethanol as a source of energy (energy yield v. energy input)
- Will this mean promotion of biodisel in Europe
  ?
- More rapeseed meal and less EU DDGS ?
- Bioethanol from non-feed materials ?

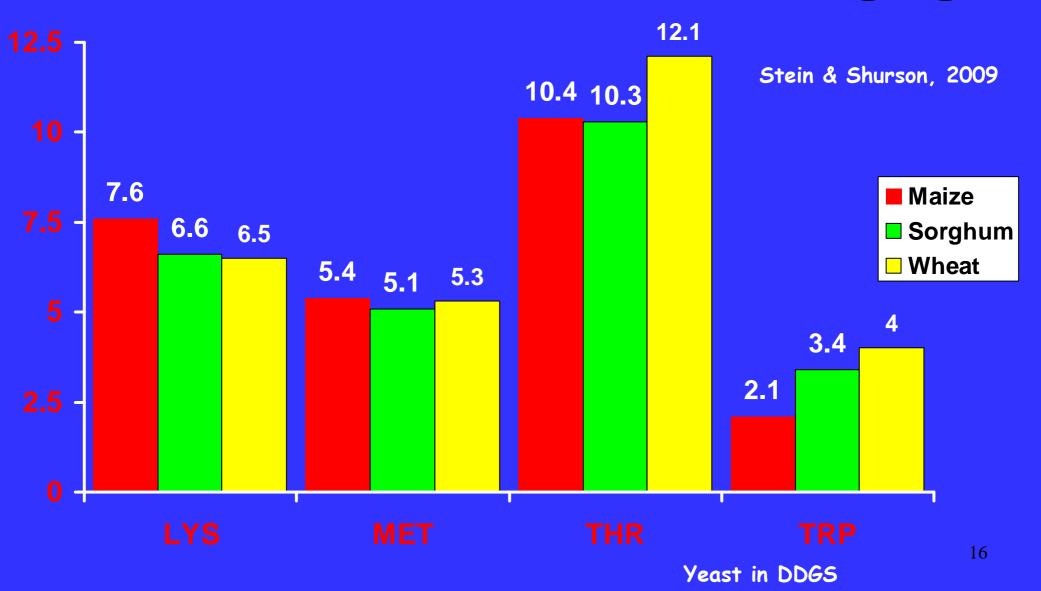
#### **Composition of Maize and Wheat DDGS**

|                     | Maize<br>DDGS | Wheat<br>DDGS |
|---------------------|---------------|---------------|
| Crude protein, g/kg | 251           | 360           |
| Oil, g/kg           | 87            | 29            |
| NDF, g/kg           | 240           | 250           |
| DE, MJ/kg           | 14.5          | 14.4          |
| NE, MJ/kg           | 7.5           | 7.2           |

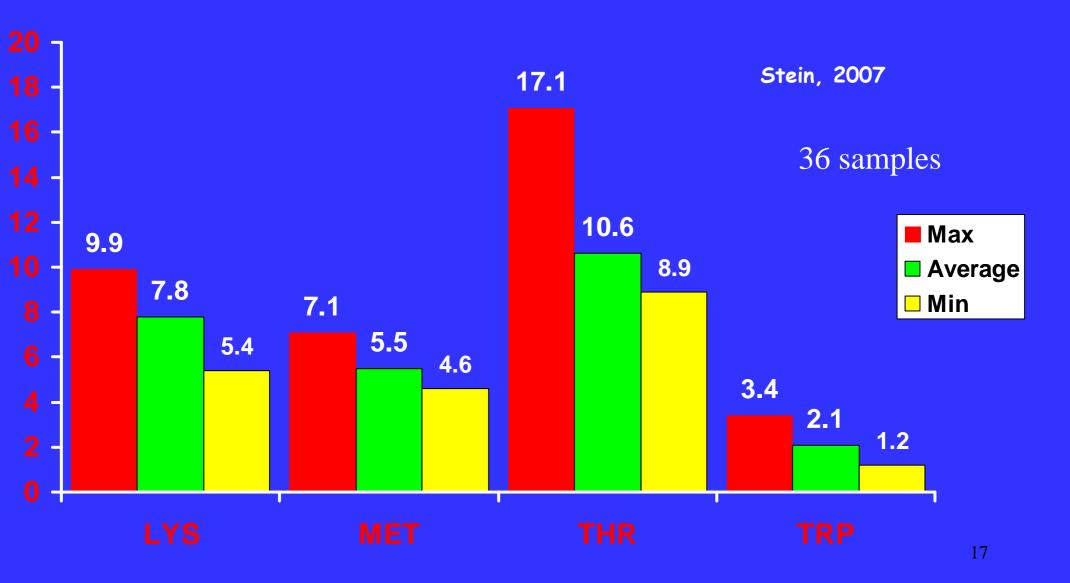
(Leterme & Beaulieu, 2009)<sup>12</sup>

# **Composition of DDGS**

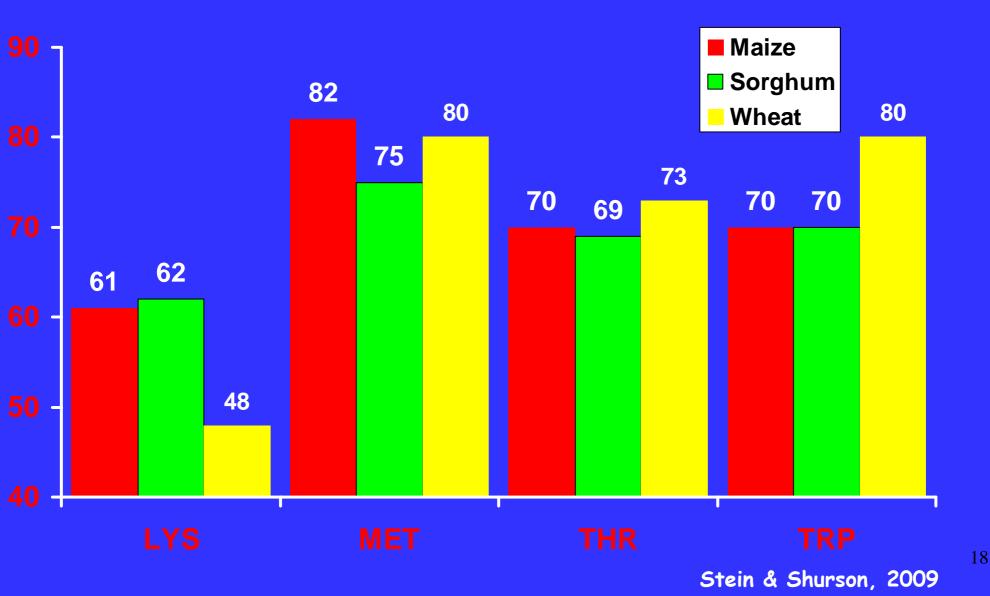
- Influenced by:
  - Feedstock (variety, blend of cereals)
  - Manufacturing plant
  - Ratio of wet cake to solubles
  - Drying method


# New developments in DDGS

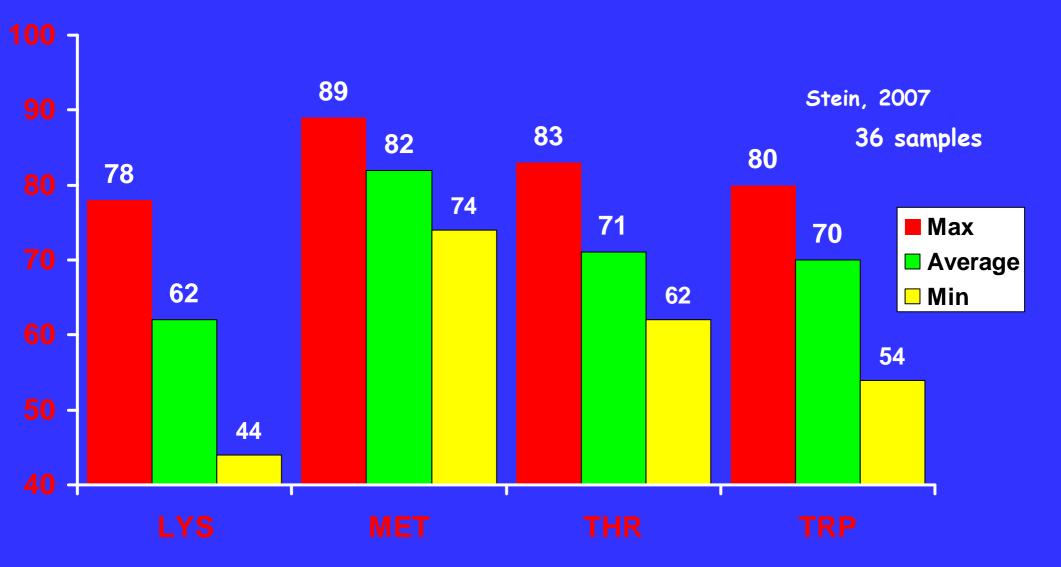
- Fibre removal
  - Increases CP by 6 to 8% units
- Oil removal
  - Reduces energy value


# Energy content in maize and DDGS

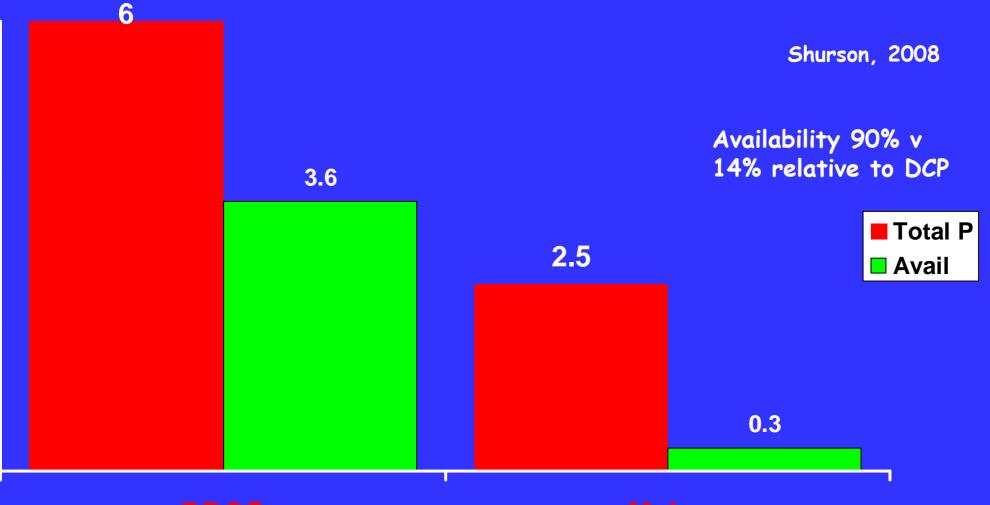
|                    | Maize | DDGS<br>Average | DDGS<br>Low | DDGS<br>High |
|--------------------|-------|-----------------|-------------|--------------|
| Energy Digy.,<br>% | 90    | 77              | 74          | 83           |
| DE, MJ/kg          | 14.7  | 14.9            | 14.2        | 16.5         |
| Starch, g/kg       | 620   | 73              | 38          | 114          |


# AA in DDGS from cereals, g/kg




#### Variation in AA in maize DDGS, g/kg




#### Digy. of AA in DDGS from cereals, g/kg



#### Variation in digy. of AA in maize DDGS, %



# P level and availability in maize and maize DDGS for pigs, g/kg



## Maize DDGS for weaner pigs (no. trials)

|          | Improved | No effect | Poorer |
|----------|----------|-----------|--------|
| ADG      | 0        | 10        | 0      |
| Feed/day | 0        | 8         | 2      |
| FCE      | 5        | 5         | 0      |

Stein & Shurson, 2009

Summary of 10 trials with 0 to 30% DDGS in maize-SBM diets

# Maize DDGS for G-F pigs (no. trials)

|              | Improved | No effect | Poorer |
|--------------|----------|-----------|--------|
| ADG          | 1        | 18        | 6*     |
| Feed/day     | 2        | 15        | 6      |
| FCE          | 4        | 16        | 5      |
| Iodine value | 0        | 1         | 7      |

\* Mainly at 40% inclusion

Stein & Shurson, 2009

Summary of 25 trials with 0 to 40% DDGS

#### Response to DDGS in maize - SBM diets (23 to 114kg) - growth

| DDGS, %     | 0    | 10   | 20   | 30   |
|-------------|------|------|------|------|
| ADG, kg     | 0.92 | 0.92 | 0.92 | 0.91 |
| Feed/d, kg* | 2.57 | 2.55 | 2.49 | 2.47 |
| FCE*        | 2.79 | 2.76 | 2.71 | 2.7  |

\* Significant linear effect

Shurson, 2008

#### Response to DDGS in maize - SBM diets (23 to 114kg) - carcass

| DDGS, %        | 0    | 10   | 20   | 30   |
|----------------|------|------|------|------|
| Dressing, % *  | 77.9 | 77.8 | 77.1 | 76.7 |
| Belly firmness | 40   | 35   | 32   | 27   |

\* Significant linear effect

No effect on fat stability in storage to 28 days. Iodine value and PUFA increased

Xu et al 2007 by Shurson, 2008

# Effect of maize DDGS on manure

- Increased faeces (reduced DM digestibility)
- No effect on urine volume
- Increased N excretion
- Increased P excretion at >20% of diet
- No effect on  $NH_3$  and  $H_2S$

# Feeding liquid DDGS

- Possible near manufacturing plant
- Increased manure volume
- Damp conditions in house
- Loss of synthetic AA

•

#### Response to wheat DDGS in wheat - SBM diets (25 to 52kg)

| DDGS, %     | 0    | 10   | 20   | 25   |
|-------------|------|------|------|------|
| ADG, kg*    | 0.81 | 0.77 | 0.75 | 0.72 |
| Feed/d, kg* | 1.50 | 1.47 | 1.41 | 1.37 |
| FCE         | 1.86 | 1.89 | 1.88 | 1.91 |

\* Significant effect

Iso-DE, total LYS

Thacker, 2005

#### Response to wheat DDGS in wheat – SBM diets (52 to 113kg)

| DDGS, %    | 0    | 10   | 20   | 25   |
|------------|------|------|------|------|
| ADG, kg    | 1.05 | 1.02 | 1.06 | 1.09 |
| Feed/d, kg | 2.87 | 2.86 | 2.84 | 2.92 |
| FCE        | 2.74 | 2.80 | 2.70 | 2.66 |

No significant effect

Iso-DE, total LYS

Thacker, 2005

# Diet formulation on SID LYS basis (1)

| Maize DDGS, %    | 0  | 10 | 20 | 30 |
|------------------|----|----|----|----|
| maize, %         | 80 | 71 | 61 | 52 |
| Soyabean meal, % | 18 | 18 | 17 | 16 |
| Misc             | 2  | 1  | 2  | 2  |

# Diet formulation on SID LYS basis (2)

| DDGS, %           | 0    | 10   | 20   | 30   |
|-------------------|------|------|------|------|
| Cr. protein, g/kg | 155  | 172  | 189  | 206  |
| Fat, g/kg         | 37   | 45   | 46   | 50   |
| ME, MJ/kg         | 14.1 | 13.9 | 13.7 | 13.4 |

# Maize DDGS in sow diets

- Considered risky due to mycotoxin concerns
- Increased lactation intake
- Sows more content
- Less constipation
- In UMN trials up to 30% in lactation diet had no effect on sow and litter performance

#### Stein & Shurson 2008

# Maize DDGS and gut health in pigs

 "Dietary inclusion of 10% DDGS appears to provide some benefit to growing pigs subjected to a moderate *L. intracellularis* challenge, similar to those of a currently approved antimicrobial regimen"

Whitney et al. 2006

# Maximum inclusion levels of Maize DDGS in pig diets

- Nursery (>7kg) 30%
- Grow-finish 30%
- Gestation 50%
- Lactation 30%

\* Golden high quality US DDGS

(Shurson 2008)

#### Barriers to maize DDGS use in pig diets

- Variability in nutrient content and digestibility
- NSP content (more a problem in wheat DDGS)
- Small particle size and flowability
- Perceived risk of mycotoxins (sows)
- Poorer pellet quality
- Effect on carcass fat quality
- Reduced intake at high levels
- Lack of reliable net energy values

#### Shurson, 2007

# Quality control in DDGS purchase

- Source / production system
- Chemical composition (CP > 27%; fat >9%; P >0.55)
- Colour (light golden is best)
- Odour (normal versus burnt)
- Mould / mycotoxins
- Lysine availability
- LYS:Protein ratio (>2.8%; Low value related to low LYS digestibility)

#### Contaminants in maize DDGS

- Small number of samples from US plants had Fumonisin above FDA threshold
- Virginiamycin (or other antibiotic) isused in some processes but should be destroyed in drying

# Wheat DDGS in growing pig feeds

- High fibre can limit intake
- · AA balance
- Limit to 5 to 10% in G-F diets
- Above 10% if energy and AA balanced

# Wheat DDGS in pig feeds - Europe

- Geatating sows 40%
- Finishing pigs 20%
- Nursery pigs 3-5 wks 5%

Schothorst 2007 - Feed Tech 38

# Maize DDGS in poultry diets

- Benefits
  - Good energy and AA source when <15% of diet
  - May reduce P excretion
  - Improved egg yolk and skin colour
  - "Golden" gives best performance
  - Very palatable
- Limitations
  - Energy value 84% of maize
  - Protein quality
  - High Na may affect litter moisture



# Maize DDGS in poultry diets - limits

- Broilers and layers
  - 10% inclusion without energy adjustment
  - >10% with adjustment for energy and AA
  - Some used 15 to 20% with little effect



# Wheat DDGS in poultry feeds

- Nutritional profile similar to canola
- Little information on its use
- Up to 15% used for broilers without problems

# **Biodiesel co-products**

- Rapeseed meal Long history of use
  - Solvent extraction
  - Cold pressed higher in fat
  - Should be from "00" varieties
  - Optimum inclusion rates 8 to 12% Occasionally higher
- · Glycerol

# Feed grade glycerol

- About 80% glycerine, water, minerals, methanol (trace)
- Risk of residues e.g. dioxin from animal and waste fats
- Up to 5% in pig feeds; 10% in poultry
- Some excretion of glycerine via kidneys
- Integrity of source is critical

Doppenberg & van der Aar, 2007

#### Conclusions

- Growth in biofuel will increase ingredient prices
- In Europe biodiesel is more important
- Big tonnage of DDGS on world market is from maize
- Maize and wheat DDGS can be used in pig feeds
- Quality must be assured
- Need accurate values in formulation
- Long term supply uncertain subsidies, GM issues

#### Useful websites

- <u>www.ddgs.umn.edu</u>
- www.ddgs.usask.ca