MAS using a dense SNP markers map:

Application to the Normande and Montbéliarde breeds

Guillaume F., Fritz S., Ducrocq V., Croiseau P. and Boichard D.

ALIMENTATION
AGRICULTURE
ENVIRONNEMENT

Introduction

- France has run a MAS program since 2001 in the three main dairy breeds (Holstein, Normande and Montbeliarde)
- In 2008, 54k SNP chip available
- Find a solution convenient for all breeds, in a short time.
 - QTL detection
 - Simple haplotype based model
- Promising results in Holstein
- → What are the results in « smaller » breeds?

Normande and Montbéliarde, two medium size breeds

Normande

- 387 000 recorded Cows
- ~150 progeny tested Bulls /year

Montbeliarde

- 263 000 recorded Cows
- ~150 progeny tested Bulls /year

Fine-mapping resource population

- ~600 sires/breed genotyped with the 54k SNP chip
- 15 traits
- LD-LA analysis
- → Confirm and Fine Map QTL
- → Identify Haplotypes in LD with QTL

QTL detection : Results

- Numerous QTL have been found for each traits
- Most QTL are breed specific
- QTL detection more problematic in smaller population
- → From 40 to 50 % of Genetic Variance can be explained by « reliable» QTL => MA-Evaluation

French MAS Model

Haplotype based model

$$y_i = \mu + u_i + x_i' h + e_i$$

- y_i is the phenotype of individual i (DYD)
- μ is an intercept
- u_i is the polygenic effect of individual i
- h is a vector of hapotypes' effects (IBS)
- x_i is an incidence vector
- e_i is a random residual

Variance component:

- From 31% to 44 % of genetic variance explained by 17 to 38 QTL in Normande breed
- From 33 % to 43 % of genetic variance explained by 15 to 27 QTL in Montbeliarde breed

Validations samples (October 2008)

- 152 Normands and 144 Montbeliards candidates
- 2004 information of these candidates available
- Ending progeny test in 2008

For these candidates, correlation between:

- DYD observed in 2008
- Polygenic or MA-EBV based on available phenotypes in 2004
- (Weighted by 2008 DYD's EDC)

First results

	Normande		Montbeliarde		
Traits	Correlation (DYD2008 x MA-EBV2004)	Increase Compared to polygenic EBV	Correlation (DYD2008 x MA-EBV2004)	Increase Compared to polygenic EBV	
Milk Yield	0,560	0,274	0,550	0,289	
Fat Yield	0,543	0,123	0,480	0,236	
Prot Yield	0,523	0,263	0,494	0,266	
F%	0,699	0,139	0,664	0,187	
P%	0,584	0,289	0,638	0,161	
SCC	0,587	0,187	0,599	0,131	
FER	0,434	0,173	0,496	0,224	

- Correlations are improved
- ...Improvement are lower than in Holstein
- Validation sample remain small...

Second validation

- January 2009 (New MAS program running for 3 months)
 - Montbeliarde population increase :
 - 601 -> 921 genotyped population
 - 144 -> 277 candidates
- Validation :

	Milk Yield	Fat Yield	Prot Yield	F%	P%
MAS Oct08 (144)	0.55	0.48	0.49	0.66	0.63
MAS Jan09 (144)	0.56	0.56	0.51	0.65	0.53
MAS Jan09 (227)	0.42	0.44	0.38	0.58	0.54

 Figures getting lower, mostly due to the newly genotyped candidates

Second validation

- New genotyped candidates :
 - Less related to animal used in QTL detection
 - Coming from smaller family
- →The model needs to better fit the structure of the population
 - Frequent fine mapping study to update model
 - Lowering significance threshold?
- → Due to population size, validation of the model remains hazardous
- →Are the challenges faced by smaller population the same as in the Holstein population?

Comparisons

- Compared to Holstein :
 - Correlations are lower → Less QTL included, less variance explained by them in the model
 - Validation is more hazardous
 - Computing time lower
- Comparisons with genome wide evaluation (work still in progress):
 - Results are of the same order
 - Cf P.Croiseau's
 (presentation (session 28))
 - Compatible with monthly evaluation

Conclusions

- Haplotype-based model may provide a first solution to small population needs
 - → Use of SNP can enhance evaluation even in smaller population
- Time to reach a critical population size will take longer than for bigger population
- Validation of the model will also take longer

Acknowledgements

This study is a collaboration between:

- Institut de l'élevage
- INRA
- UNCEIA
- Labogena

LABOGENA

Thank you for your attention

MAS using a dense SNP markers map:

Application to the Normande and Montbéliarde breeds

Guillaume F., Fritz S., Ducrocq V., Croiseau P. and Boichard D.

