UNIVERSITY OF COPENHAGEN

Department of Large Animal Sciences

EAAP 2008 Session 35, August 27 Abstract no. 2960

Genetic parameters for pathogen-specific mastitis in Danish Holstein Cattle

L.P. Sørensen^{1,2}, P. Madsen², T. Mark¹, M.S. Lund²

¹Large Animal Science, Faculty of Life Sciences, KU, DK-2630 Taastrup ²Genetics and Biotechnology, Faculty of Agricultural Sciences, AUU, DK-8830 Tjele

LarsPeter.Sorensen@agrsci.dk

Nordic udder health index

- Direct and indirect measures of udder health
 - Mastitis treatments
 - Lactation average somatic cell score
 - Fore udder attachment
 - Udder depth
- Improvement?
 - Adding pathogen information?
 - Bacteriological culturing of milk samples

Motivation

Pathogen information may prove beneficial in a breeding context because:

- Direct measure of an infection of the udder and the pathogen causing the infection
- Mastitis caused by different pathogens may be considered as different traits
- r_a between pathogen-specific mastitis and SCS may depend on causative pathogen
- Economic values of mastitis caused by different pathogens may differ

Objectives of study

- To estimate genetic variation and h² of pathogen-specific mastitis traits
- To estimate r_a among different pathogen-specific mastitis traits

Data I

Editing

- Minimize bias of pathogen data
- Reduce extreme category problems
- Removal of unreliable data

Final data set:168,158 first lactations from 1529 herds

Data II

- Mastitis incidence, before editing in ():
 - Unspecific: 0.230
 - Strep. dysgalactiae: 0.152 (0.100)
 - *E. coli*: 0.140 (0.112)
 CNS: 0.140 (0.119) *Staph. aureus*: 0.155 (0.145) *Strep. uberis*: 0.187 (0.160)
 - Other: 0.144 (0.147)
 - Culture negative: 0.236 (0.216)
- Mastitis with pathogen information: 0.72
- Frequency of culled animals: 0.172 (0.191 vs 0.166)

Threshold model

$$\lambda_{ijklm} = YM_i + AGE_j + b t_{ijklm} + hys_k + sire_l + e_{ijklm}$$

where

- λ_{ijklm} = liability to mastitis
- YM_i = "fixed" effect og yr×mo of calving
- AGE_i = "fixed" effect of calving age
- hys_k = random effect of herd×yr×season
- *sire*₁ = transmitting ability of sire
- b ="fixed" regression coffecient of λ on the length of period at risk
- t_{ijklm} = period at risk, defined as the number of d from 15 d before
- calving to the date of culling or to the end of the period at risk.
- All cows treated for mastitis were assigned a full period
- (Heringstad *et al.*, 2001)
- $e_{ijklm} = residual \sim iid N(0,1)$

Full Bayesian approach via Gibbs sampling implemented in the DMU package (Madsen and Jensen, 2006)

Results I (*h*²)

Mastitis trait	h ²	95% CI	ESS
Unspecific	0.114	[0.086;0.138]	1527
Strep. dysgalactiae	0.044	[0.017;0.064]	238
E. coli	0.050	[0.021;0.077]	256
CNS	0.052	[0.022;0.077]	312
Staph. aureus	0.039	[0.018;0.058]	277
Strep. uberis	0.079	[0.043;0.112]	356

Results II (r_a)

	E. coli	CNS	Staph. aureus	Strep. uberis
Strep. dysgalactiae	0.637	0.640	0.714	0.768
E. coli		0.602	0.452	0.628
CNS			0.608	0.745
Staph. aureus				0.631

Posterior density of $r_{\rm a}$

Economic values

- Including pathogen information in the genetic evaluation of udder health may prove beneficial – especially as the cost of mastitis caused by different pathogens varies:
 - Contagious pathogen: €483/case
 - Environmental pathogens: €272/case

(Østergaard et al., 2008)

Conclusion

- h² of unspecific mastitis consistent with other studies of similar populations
- Pathogen-specific h² of mastitis were low –in most cases consistent with other studies
- *r*_a in all cases different from unity → different pathogen-specific mastitis traits may be considered as different traits

