Joint effects of CSN3 and LGB genes on coagulation properties in Czech Fleckvieh

J. Matejickova¹*(jitka.k@seznam.cz), A. Matejicek¹, M. Stipkova¹, O. Hanus², V. Gencurova², J. Kyselova¹, M. Kubesova¹, E. Nemcova¹, T. Kott¹, J. Sefrova¹, M. Krejcova¹ and J. Bouska¹

¹ Institute of Animal Science, Prague – Uhrineves, Czech Republic, ²Research Institute for Cattle Breeding, Rapotin, Czech Republic.

Abstract

The aim of this study was to determine the joint effects of *CSN3* and *LGB* genotypes on parameters of quality and coagulation of milk in Czech Fleckvieh cows. Three hundred and twenty-eight Czech Fleckvieh cows were determined for *CSN3* (kappa-casein) and *LGB* (beta-lactoglobulin) genotypes using the PCR-RFLP method, milk quality parameters and coagulation properties. Fifteen genotype combinations were detected, with *ABAB* (21.0%) and *AAAB* (18.3%) occurring as the most frequent. The observed genes significantly affected the contents of milk protein (crude protein, true protein, casein and whey protein) as well as solid non-fat in milk, casein number and curd quality. *BBAA* was found to be the genotype with the highest positive impact on most of the milk characteristics evaluated. Whereas *ABBB*, *BBBB*, *BBAB* and *ABAB* had a positive influence on milk quality and milk coagulation properties, genotypes containing *CSN3* allele *E* had a negative effect.

Keywords: cattle; milk protein genes; kappa-casein; beta-lactoglobulin; milk production parameters; coagulation properties

The financial support from the project NAZV 1G46086 is acknowledged.

Introduction

Milk protein genes, especially kappa-casein (*CSN3*) and beta-lactoglobulin (*LGB*), are important determinants of milk quality and milk coagulation properties. The kappa-casein gene (*CSN3*) is situated on bovine chromosome 6. Allele *A* has been reported as the most frequent, with the effect of increasing milk yield but decreasing protein content (Neubauerová, 2001; Kučerová et al., 2005). Allele *B* is often referred to as a "key allele", increasing milk protein quality and coagulation properties (Hanuš et al., 1995; Amigo et al., 2001; Comin et al., 2006), whereas a negative effect of allele *E* on milk coagulation properties was reported by Ikonen et al. (1999a) and Comin et al. (2006). The gene for beta-lactoglobulin (*LGB*) is situated on bovine chromosome 11. Allele *B* was reported to increase milk protein and milk fat contents, while allele *A* increases milk and protein yields (Neubauerová, 2001; Kaminski et al., 2002; Kučerová et al., 2006). The aim of the present study was to investigate the joint effects of *CSN3* and *LGB* genotypes on parameters of milk quality and milk coagulation properties of Czech Fleckvieh cows.

Material and Methods

Three hundred twenty eight of Czech Fleckvieh (CF) cows were genotyped for *CSN3* and *LGB* genotypes by use of PCR-RFLP. Milk samples were collected between 50 and 140 days after first calving and analyzed for contents of dry matter (%), solid non-fat (%), crude protein (%), true protein (%), casein (%), whey protein (%), non-protein nitrogen substances (%), true protein (%), casein number, coagulation time (s), curd quality (graded from 1=excellent to

4=poor), curd firmness (mm) and whey amount (ml). Statistical analysis was carried out by means of the program package SAS using GLM and the following model equation:

$$y_{ijkl} = \mu + HYS_i + G_j + bA_k + e_{ijkl}$$

where:

y = observed characteristic $\mu =$ average of the characteristic HYS = effect of herd, year and season of calving G = joint effect of *CSN3* and *LGB* genotypes bA = effect of the age at first calving of cow e = residual effect

Results and discussion

Fifteen genotype combinations of *CSN3* and *LGB* genes were detected, with *ABAB* (21.0%) and *AAAB* (18.3%) occurring as the most frequent. A significant effect of *CSN3* + *LGB* genotypes was found in almost all milk quality parameters (Table 1), except for the contents of dry matter (DM) and non-protein nitrogen substances (NPNS). This effect was highly significant (P < 0.001) for the contents of true protein (TP), casein (C) and whey protein (WP), and for casein number (CN). The most favourable results were associated with genotype combinations *BBAA*, *BBBB* and *ABBB*. Genotype *BBAA* excelled in all parameters except for whey protein content and casein number. Genotypes *BBBB* and *ABBB* resulted in a high casein content and low whey protein content. Genotypes *AAAA*, *ABAA*, *AEAA*, *AAAB* and *BEAB* were linked with the least favourable results. Hanuš at al. (2000) reported that genotypes *BB* of *CSN3* and *LGB* genes significantly increased casein content and casein number, and genotype *AA* of *LGB* gene increased whey protein content in milk of Czech Fleckvieh cows.

Table 1. Joint effects of $CSN3 + LGB$ genotypes on	n milk quality parameters ($n = 328$)
---	---

Genoty	pe n	Milk quality parameter							
		DM(%)	$SNF^{**}(\%)$	$CP^{**}(\%)$	TP***(%)	NPNS(%)	$C^{***}(\%)$	WP***(%)	CN***(%)
AAAA	43	13.03	9.05	3.38	3.17	0.21	2.64	0.53	78.05
AAAB	60	13.02	9.04	3.36	3.17	0.19	2.69	0.48	79.87
AABB	35	13.14	9.06	3.39	3.20	0.19	2.73	0.49	80.51
ABAA	33	12.98	8.96	3.32	3.13	0.20	2.59	0.54	77.89
ABAB	69	13.13	9.11	3.44	3.25	0.20	2.76	0.49	80.23
ABBB	33	13.35	9.19	3.54	3.34	0.20	2.90	0.43	82.08
AEAA	2	12.37	9.20	3.32	3.14	0.17	2.58	0.57	77.67
AEAB	6	12.98	9.08	3.35	3.16	0.19	2.68	0.48	80.05
AEBB	6	12.96	8.98	3.29	3.10	0.19	2.72	0.37	82.82
BBAA	5	13.49	9.54	3.78	3.62	0.16	3.07	0.55	81.19
BBAB	12	13.25	9.07	3.44	3.24	0.20	2.77	0.47	80.40
BBBB	12	13.01	9.09	3.47	3.27	0.20	2.82	0.45	81.41
BEAB	6	13.41	8.95	3.33	3.10	0.24	2.65	0.45	79.32
BEBB	5	13.19	9.23	3.49	3.24	0.24	2.83	0.41	81.13

** , *** significance at P < 0.01 and P < 0.001

DM = dry matter; SNF = solid non-fat; CP = crude protein; TP = true protein; NPNS = non-protein nitrogen substances; C = casein; WP = whey protein; CN = casein number

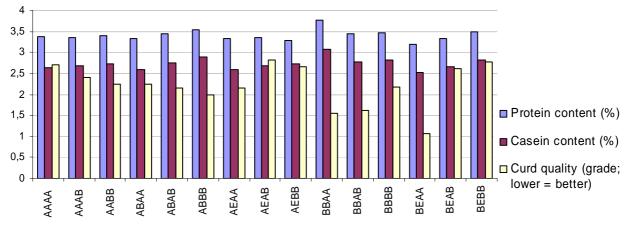

Regarding cheese-making characteristics, the joint effects of *CSN3* and *LGB* genes were significant only on curd quality (Table 2). As for milk quality and milk production characteristics, the genotype combination *BBAA* had the most favourable influence (Graph 1). Genotype *BBAA* was associated with the shortest coagulation time, and relatively high curd quality and firmness. However, it resulted in a lower amount of eliminated whey relative to other genotypes. Also genotypes *BBAB* and *ABBB* had a positive impact on cheese-making characteristics. Genotype *BBBB* was associated with relatively high curd firmness and good curd quality, but with a long coagulation time. A negative influence on cheesemaking characteristics was caused by genotypes *AEAB*, *AEBB*, *BEBB*, *BEAB* and *AAAA*. Results are in agreement with Choi and Ng-Kwai Hang (2002), who found that the genotype combinations *BBBB*, *BBAB*, *BBAA*, *ABBB* and *AABB* positively affected cheese-making parameters, whereas *AAAA* and *AAAB* had a negative influence. Unfortunately, they did not identify *CSN3* allele *E* in their study. Comin et al. (2006) reported that the genotypes containing *CSN3* allele *E* were associated with poor coagulating milk, and genotypes with *CSN3* allele *B* resulted in the best coagulation properties of milk.

Table 2. Joint effects of CSN3 + LGB genotypes on cheese-making parameters (n = 328)

Genoty	pe n	Cheese-making parameter						
		coagulation time(s) curd quality*(grade) curd firmness(mm) whey amount(ml)						
AAAA	43	126	2.70	1.82	33			
AAAB	60	127	2.40	1.78	33			
AABB	35	121	2.24	1.82	33			
ABAA	33	105	2.24	1.82	34			
ABAB	69	110	2.16	1.80	34			
ABBB	33	123	1.98	1.77	33			
AEAA	2	95	2.16	1.66	35			
AEAB	6	181	2.83	1.72	31			
AEBB	6	131	2.65	1.88	34			
BBAA	5	90	1.55	1.79	32			
BBAB	12	100	1.61	1.72	34			
BBBB	12	135	2.17	1.68	33			
BEAB	6	100	2.62	1.83	35			
BEBB	5	110	2.77	1.88	30			

* significance at P < 0.05

Graph 1. The effect of *CSN3+LGB* genotypes on protein content (%), casein content (%), and curd quality (grade; lower = better curd quality)

Conclusion

A strong influence of the CSN3 gene in combination with the LGB gene on milk protein composition and milk coagulation properties was found. Whereas CSN3 allele B had a positive influence on most characteristics evaluated, allele E had a negative impact. Genotypes *ABBB*, *BBBB*, *BBAB* and *ABAB* had a positive effect on milk quality and coagulation properties, while genotypes containing CSN3 allele E caused a negative response.

References

Amigo L., Martin-Alvarez P.J., Garcia-Muro E., Zarazaga I. (2001): Effect of milk protein haplotypes on the composition and technological properties of Fleckvieh bovine milk. Milchwissenschaft, 56, 488–491.

Comin A., Cassandro M., Ojala M., Bittante G. (2006): Effect of β - and κ -casein genotypes on milk coagulation properties, milk production and content, and milk quality traits in Italian Holstein cows. In: 57th Annual Meeting of the EAAP, 17.–20.9. 2006, Antalya, Turkey.

Farrell H.M., Jimenez-Flores R., Bleck G.T., Brown E.M., Butler J.E., Creamer L.K., Hicks C.L., Hollar C.M., Ng-Kwai-Hang K.F., Swaisgood H.E. (2004): Nomenclature of the proteins of cows' milk – sixth revision. J. DairySci., 87, 1641–1674.

Hanuš O., Gajdůšek S., Gabriel B., Kopecký J., Jedelská R. (1995): Cheese-making properties of raw and pasteurized milk with respect to milk protein polymorphism. Czech J. Anim. Sci., 40, 523–528.

Hanuš O., Beber K., Kopecký J. (2000): Milk protein variants and characteristics of cows, milk. In: Breeding, Nutritional and Technological Aspects of Milk Production and Quality. Rapotín, Czech Republic, 47–49.

Choi J.W., Ng-Kwai-Hang K.F. (2002): Effects of genetic variants of κ -casein and β -lactoglobulin and heat treatment of milk on cheese and whey compositions. Asian-Aust. J. Anim. Sci., 5, 732–739.

Ikonen T., Ahlfors K., Kempe R., Ojala M., Ruttionen O. (1999a): Genetic parameters for milk coagulation properties and prevalence of noncoagulating milk in Finnish dairy cows. J. Dairy Sci., 82, 205–214.

Kaminski S., Rymkiewicz-Schymczyk J., Wojcik E., Rusc A. (2002): Associations between bovine milk protein genotypes and haplotypes and the breeding value of Polish Black-and-White bulls. J. Anim. Feed Sci., 11, 205–221.

Kučerová J., Němcová E., Štípková M., Jandurová O., Matějíček A., Bouška J. (2005): The association between CSN3 genotypes and milk production parameters in Czech Pied Cattle. In: 56th Ann. Meet. EAAP, 5.–8.6. 2005, Uppsala, Sweden. Available at http://www.eaap.org/uppsala/Papers/added/G6.15_Jitka.pdf

Kučerová J., Matějíček A., Jandurová O. M., Sorensen P., Němcová E., Štípková M., Kott T., Bouška J., Frelich J. (2006): Milk protein genes *CSN1S1*, *CSN2*, *CSN3*, *LGB* and their relation to genetic values of milk production parameters in Czech Fleckvieh. Czech J. Anim. Sci., 51, 241–247.

Neubauerová V. (2001): Detection of genetic markers and possibilities of their use in cattle and other subungulates. Thesis University of South Bohemia, Agricultural Faculty, České budějovice, CR, 211 pp.