Genetic correlations between measures of milk coagulation properties and their predictions by mid-infrared spectrometry

UNIVERSA UNIVERSIS PATAVINA LIBERTAS

A. Cecchinato, M. De Marchi, R. Dal Zotto, L. Gallo,

G. Bittante, and P. Carnier

Department of Animal Science, University of Padova, Italy

alessio.cecchinato@unipd.it

59th Annual Meeting of the European Association for Animal Production

VILNIUS, LITHUANIA lugust 24th - 27th, 2008

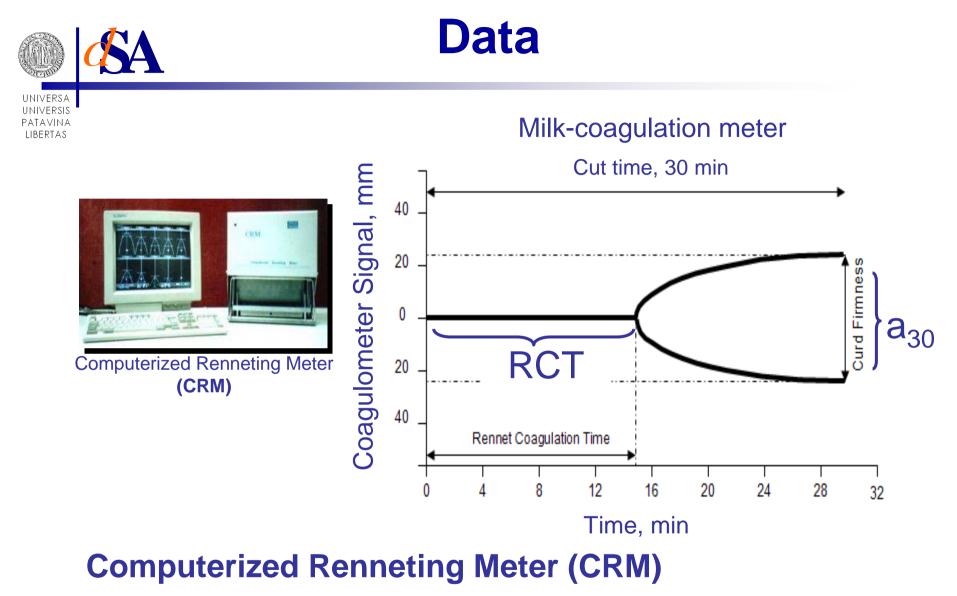
Introduction

- Milk coagulation properties (MCP) play an important role in cheese production
- In Italy almost 73% of milk is used for cheese making (Ismea, 2002)
- Exploitable additive genetic variation exist for MCP (Ikonen et al., 1997, 1999; Cassandro et al., 2008)
- Genetic improvement of MCP could be an effective way to enhance the efficiency of cheese production

Introduction

- Assessment of MCP is difficult to be carried out routinely on large scale using standard method (e.g. computerized renneting meter, CRM)
- MIR (mid-infrared spectrometry) has been proposed as prediction tool of MCP at the population level but MCP prediction of phenotype is not very accurate (De Marchi et al., 2008)
- Might MIR be a useful indirect breeding goal for the improvement of MCP?

- Predict MCP of individual milk samples of Italian Brown Swiss breed using MIR
- Infer (co)variance components for MCP measured by CRM (mMCP) and predicted by MIR (pMCP)



Data collection

- From June 2006 to July 2007
- 30 herds located in Northern Italy
- 1,061 individual milk samples (Italian Brown Swiss cows) collected during morning milking
- Progeny of 50 sires (3 64 daughters)

Rennet coagulation time (RCT, min) and curd firmness (a₃₀, mm) (Ikonen et al., 1999; Cassandro et al., 2008)

Alessio Cecchinato Department of Animal Science – Padova - Italy

 MIR spectra were collected over the spectral range of 4,000 to 900 cm⁻¹ using a Milko-Scan FT120

 4 calibration subsets (training set) were defined to estimate prediction equations which were used for the prediction of MCP on the 4 validation sets (test set)

Mid-infrared spectra acquisition UNIVERSA UNIVERSIS PATAVINA LIBERTAS 1.6 1701-3692 1.4 1493 1.2 N 1 Absorbance 0.8 0.6 3492 0.4 1748 1550 2855 0.2 1157 1080 2928 0 3970 3777 3584 2959 2766 2573 2380 2187 1995 1802 1508 1316 1123 930

Wavenumber (cm⁻¹) Example of algorithm unprocessed MIR spectra for milk

The reliability of the predictive models were determined using:

- Root Mean Square Error of Calibration (RMSE)
- Correlation coefficient (r)
- Range Error Ratio (**RER**)

RER < 3 little practical utility</p>

3 < RER < 10 limited to good practical utility</p>

RER > 10 high utility value

(Williams, 1987; Hubert et al., 2003; Downey et al., 2005)

Statistical analysis/ 2

Bayesian bivariate mixed model

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z}_{1}\mathbf{c} + \mathbf{Z}_{2}\mathbf{a} + \mathbf{e}$$

where:

LIBERTAS

- y vector of predicted and measured milk coagulation properties
- β vector of non genetic effects (DIM: 10 classes, parity: 3 classes)
- **c** vector of herd effects (30 classes) $\mathbf{c} \sim N(\mathbf{0}, \mathbf{P} \otimes \mathbf{I})$
- **a** vector of animal additive genetic effects $\mathbf{a} \sim N(\mathbf{0}, \mathbf{G}_0 \otimes \mathbf{A})$
- **e** vector of residual effects $\mathbf{e} \sim N(\mathbf{0}, \mathbf{R}_0 \otimes \mathbf{I})$

Convergence assessed by inspection of trace plot

After burn-in (100,000) the number of the samples were 2,000,000

Descriptive statistics

UNIVERSA UNIVERSIS PATAVINA LIBERTAS

^s Trait	Mean	CV (%)	Min	Max
RCT, min	15.0	27	2.0	29.3
a ₃₀ , mm	41.7	21	6	64.0
Milk Yield, kg/d	28.6	28	7.4	68.0
Days in milk, d	202	62	6	597
Milk fat, %	3.98	19	0.9	6.9
Milk protein, %	3.72	10	2.7	5.4
Casein, %	2.88	10	1.9	4.2
SCS	2.4	90	-4.5	8.7
рН	6.7	2	3.6	7.2
Acidity, SH%50 ml	3.2	13	0.8	4.8

RCT=rennet coagulation time (min); \mathbf{a}_{30} = curd firmness (mm);

Prediction models

UNIVERSA UNIVERSIS PATAVINA LIBERTAS

	Training set					
Parameter	Ν	Mean	CV	r	RMSE	RER
Subset 1	171					
- RCT		15.1	27	0.78	2.27	7.65
- a ₃₀		41.9	21	0.70	6.24	5.60
Subset 2	170				7	
- RCT	3 < F	RER < 1	0 : lir	nited	2.63	5.37
- a ₃₀	to go	od prac	tical	utility	5.72	6.75
Subset 3		(Williams, 1987)				\neg
- RCT		14.8	26	0.83	2.15	9.81
- a ₃₀		41.8	20	0.68	6.06	7.00
Subset 4	171					
- RCT		15.3	28	0.80	2.53	7.81
- a ₃₀		41.5	22	0.70	6.58	6.96

Prediction models

UNIVERSA UNIVERSIS PATAVINA LIBERTAS

			Trainin		Test set	
Parameter	Ν	Mean	CV	Ν	Mean	CV
Subset 1	171			862		
- RCT		15.1	27		14.9	26
- a ₃₀		41.9	21		41.7	20
Subset 2	170			863		
- RCT		15.2	27		14.9	26
- a ₃₀		40.8	20		41.9	21
Subset 3	175			858		
- RCT		14.8	26		14.8	25
- a ₃₀		41.8	20		41.7	21
Subset 4	171			862		
- RCT		15.3	28		14.9	25
- a ₃₀		41.5	22		41.7	20

Posterior medians for RCT

UNIVERSA UNIVERSIS								
PATAVINA LIBERTAS	Va	Variance components and heritabilities						
Trait	σ² _A	σ_{H}^{2}	σ_{E}^{2}	h²	<i>P</i> (h ² >0.10)			
Subset 1	1							
- RCT	5.5	1.6	9.7	0.33 (0.08)	100			
- pRCT	4.1	1.5	4.5	0.40 (0.10)	100			
Subset 2	2							
- RCT	5.0	1.9	8.0	0.33 (0.08)	100			
- pRCT	3.2	1.6	3.6	0.37 (0.09)	100			
Subset 3	3							
- RCT	4.4	1.7	8.6	0.30 (0.08)	100			
- pRCT	3.4	1.4	4.2	0.37 (0.09)	100			
Subset 4	4							
- RCT	4.9	1.4	7.7	0.34 (0.08)	100			
- pRCT	3.9	1.4	6.0	0.35 (0.09)	100			

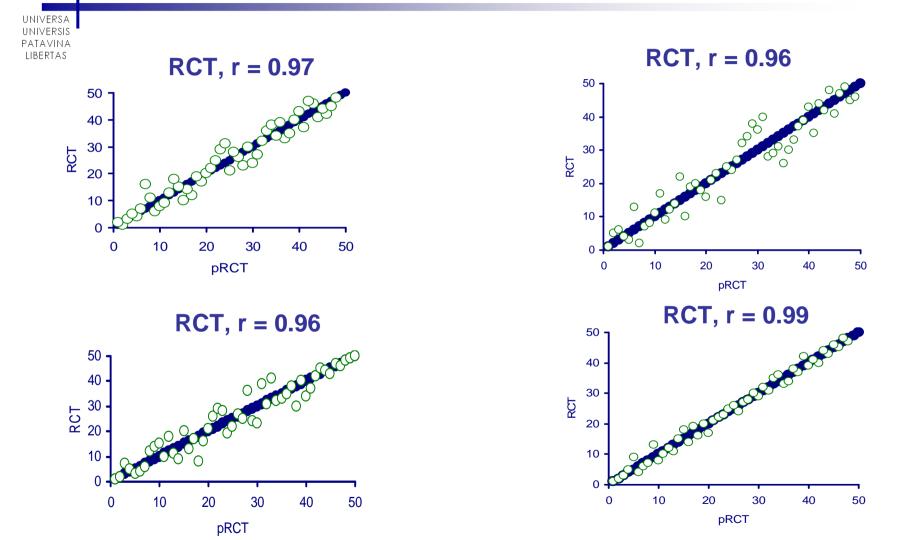
RCT= rennet coagulation time measured by CRM; **pRCT**=rennet coagulation time predicted by MIR σ_A^2 = genetic variance; σ_H^2 = herd variance; σ_E^2 = residual variance;

Posterior medians for a₃₀

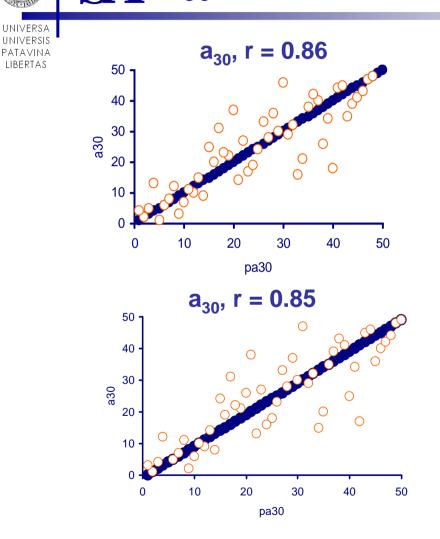
σ^2_A		Variance components and heritabilities						
	σ^{2}_{H}	σ_{E}^{2}	h ²	<i>P</i> (h ² >0.10)				
18.1	9.7	52.1	0.22 (0.07)	0.97				
17.1	4.7	19.8	0.41 (0.10)	100				
18.2	9.7	52.1	0.22 (0.07)	0.98				
17.1	4.8	19.8	0.41 (0.11)	100				
22.0	9.9	50.2	0.27 (0.07)	0.99				
22.0	4.6	15.8	0.49 (0.09)	100				
19.0	8.3	48.2	0.24 (0.08)	0.98				
12.2	7.3	24.5	0.27 (0.09)	0.99				
	17.1 18.2 17.1 22.0 22.0 19.0	17.14.718.29.717.14.822.09.922.04.619.08.312.27.3	17.14.719.818.29.752.117.14.819.822.09.950.222.04.615.819.08.348.2	17.14.719.80.41 (0.10)18.29.752.10.22 (0.07)17.14.819.80.41 (0.11)22.09.950.20.27 (0.07)22.04.615.80.49 (0.09)19.08.348.20.24 (0.08)12.27.324.50.27 (0.07)				

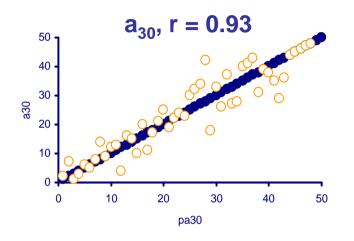
Genetic (r_A) and phenotypic (r_P) correlation

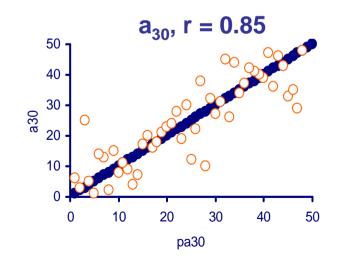
UNIVERSA UNIVERSIS PATAVINA LIBERTAS


	r _A		r _P	r _P		
Trait	Median	SD	Median	SD		
Subset 1						
- RCT – pRCT	0.91	0.07	0.67	0.02		
- a ₃₀ – pa ₃₀	0.71	0.15	0.51	0.03		
Subset 2						
- RCT – pRCT	0.93	0.06	0.61	0.03		
- a ₃₀ – pa ₃₀	0.74	0.15	0.51	0.03		
Subset 3						
- RCT – pRCT	0.91	0.06	0.72	0.02		
- a ₃₀ – pa ₃₀	0.87	0.11	0.54	0.03		
Subset 4						
- RCT – pRCT	0.96	0.03	0.69	0.02		
- a ₃₀ – pa ₃₀	0.77	0.16	0.48	0.04		

RCT=rennet coagulation time measured; **pRCT** = rennet coagulation time predicted by MIR; a_{30} = curd firmness measured; pa_{30} = curd firmness predicted by MIR

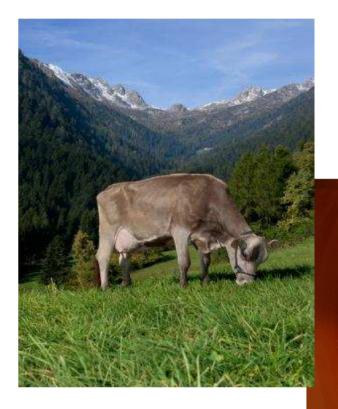

Relationships between sire rankings for RCT observed and predicted





Relationships between sire rankings for a₃₀ observed and predicted

- MIR models showed fairly good predictions for MCP (RCT and a_{30})
- Genetic correlations between MCP measured and MCP predicted were very high for RCT and high for $a_{\rm 30}$
- Heritability for MCP predicted by MIR were higher than those measured by CRM
- No substantial differences in sire rankings when measured and predicted data were used



MIR prediction can be proposed as indicator trait for an indirect improvement of milk coagulation properties

Thanks for your attention!

אם דתפורותם דתפורותם דתפורותם דוונים

Authors wish to thank:

Dr. Colette Fagan and Dr. Colm
O'Donnell, University College of Dublin

 Veneto Agricoltura (Italy) for the milk analysis

 Superbrown consortium of Bolzano and Trento

Trento province

