Genetic parameters for milk, fat and protein in Holsteins using a multiple-parity test day model that accounts for heat stress

Ignacio AGUILAR*1,2, Ignacy MISZTAL1 and Shogo TSURUTA1

¹ Animal and Dairy Science Department, University of Georgia
 ² Instituto Nacional de Investigación Agropecuaria, Las Brujas, Uruguay

Introduction

Losses due to heat stress

- Production, fertility, mortality
- Substantial genetic variation for heat tolerance (Ravagnolo and Misztal, 2000)
- Profile of heat tolerant bulls (Bohmanova et al., 2005)
 - Selection for fluid milk only decreases heat tolerance
- All studies first-parity only using repeatability test day models

Objectives

How genetic variances of heat stress change with parity?

Does sensitivity to heat stress vary throughout lactation?

What are the genetic trends for heat stress?

Studying heat stress with weather records

a1 – regular breeding value a2 – heat-tolerance breeding value f(THI) – function of temperature humidity index

Data

- Georgia Holsteins data from AIPL USDA
- TD for Milk, Fat and Protein
- First, second and third lactations
- Lactations registered 1993 2004
- Editing:
 - At least 4 TD
 - First TD < 75 DIM</p>
 - TD between 5 305 DIM
 - Age at calving
 - Cows were required to have a "valid" first lactation

Weather Data

 Hourly temperature and relative humidity available from public weather stations (9)

Hourly THI T-(0.55-0.55*RH*.01)*(T-58) (NOAA, 1976)

- Herd assigned to closest weather station
- TD records matched with average daily THI from the previous 3rd day

Production Data

	Lactation									
-	1	2	3							
TD	350,623	160,262	74,834							
Cows	38,608	17,549	8,210							
HTD	16,467	13,043	10,156							
Pedigree dat	a	68096								

Descriptive Statistics

	Milk	(kg)	Fat (kg	g*100)	Protein (kg*100)			
Lact	Mean	SD	Mean	SD	Mean	SD		
1	27.5	7.0	94.8	27.7	85.7	20.4		
2	31.6	9.4	109.3	36.3	97.5	26.3		
3	33.0	10.1	114.8	39.5	100.7	28.1		
	Mean	SD	Min	Max				
THI	62	12	23	83				

Models

Model I

Test-day repeatability model
 Milk, fat & protein

y = ... + a1 + a2 * f(thi) + p1 + p2 * f(thi) + e

 $f(thi) = \max(0, THI - 72^{\circ} F)$

 $72^{\circ} F = 22^{\circ} C$

Model II

- Test-day random regression model
 - Linear splines with knots at 5, 50, 200 and 305 DIM
 Milk

 $y = \dots + \sum a 1_i \varphi_i + a 2f(thi) + \sum p 1_i \varphi_i + p 2f(thi) + \sum h 1_i \varphi_i + h 2f(thi) + e$

Estimates for multiple-trait test-day repeatability model

		Milk		Fa	at (kg*10)0)	Protein (kg*100)			
	1	2	3	1	2	3	1	2	3	
var(<i>a</i> 1)	5.6	7.5	6.5	74	94	109	43	57	52.2	
var(5 <i>a</i> 2)*	4.0	7.0	9.0	37	75	142	22	48	108	
corr(<i>a</i> 1, <i>a</i> 2)	-0.46	-0.38	-0.47	-0.39	-0.39	-0.30	-0.43	-0.36	-0.50	

* Variance of heat stress effect at 5.5°C over the threshold

Additive (co)variances and genetic correlations between knots and THI for milk in the first, second, and third parities

Parity															
	First			Second				Third							
	5	50	200	305	THI	5	50	200	305	THI	5	50	200	305	THI
5	3.96	0.64	0.41	0.32	-0.25	8.73	0.74	0.47	0.37	-0.17	5.98	0.55	0.44	0.23	0.10
50		5.46	0.85	0.62	-0.45		8.50	0.70	0.51	-0.31		9.27	0.63	0.18	-0.21
200			6.28	0.84	-0.40			7.89	0.84	-0.43			9.24	0.76	-0.41
305				8.27	-0.27				16.35	-0.39				15.64	-0.37
THI					0.02					0.04					0.07

THI for 0.55 degree C

Genetic Evaluation

5 million Holsteins

90 million test day records for milk

Random regression model

Genetic trends of daily milk yield for 3 parities – regular effect

Genetic trends of daily – heat stress effect at 5.5° C over the threshold

Conclusions

Sensitivity to heat stress greatly increases from 1 to 3rd parity

Negative trend for heat tolerance for 2nd and third parities