

Cheap and accurate indicators to assess livestock impact on biodiversity

Muriel Tichit – Aude Barbottin – David Makowski INRA, Paris Grignon

Problem statement

Problem statement

Objective -> To assess the <u>accuracy</u> and <u>cost</u> of a wide range of indicators of livestock impact on biodiversity to find out those with the best compromise

OUTLINE

Why matter about accuracy and cost ?

 Accuracy of models combining different sets of indicators to assess livestock impact on biodiversity

 Usefulness of the different models on the basis of their accuracy and cost

Why matter about ACCURACY and COST?

- Agri-environment schemes: "action oriented payments" for good practices
- Mixed benefits of AES for biodiversity (Kleijn et al. 2007, Wilson et al. 2007)
- Biodiversity: management X ecological quality (e.g. for bird biodiversity *Tichit et al. 2005, 2007, Durant & Tichit 2008, Ottvall 2007, Van der Wal 2008*)
- Combining indicators on management and ecological quality into models

Why matter about ACCURACY and COST?

- Uncertainty in input variables, equation and parameters → low accuracy
- Complexity does not warrant accuracy, the opposite is also true!
- Model cost = $f(n^o)$ indicators)
- Cost of indicators: time for data collection, measurement methods

Why matter about ACCURACY and COST?

Type of indicators used as input variable into models		n	Cost €
Management (67 farms)	single survey	4	531
	repeated survey	4	1173
Habitat (252 fields)	computed using GIS	3	138
	visual estimates	6	1221
	repeated measurements	12	2505

DATA and statistical methods

- Data 2005 and 2006 / 252 fields / 67 farms
 - 29 indicators = input variables
 - Biodiversity measurements (2 bird species)

- Logistic regression to predict bird presence
 - Model discriminatory ability assessed with ROC methodology
 - Model cost : significant input variables
 - 10 selection methods

Model performances & type of variable

Model performances & selection method for bird 2

Model performance *versus* cost for Bird 2

CONCLUSIONS

	MODEL 1	MODEL 2
Accuracy	≈ 0.7	≈ 0.8
Cost	1600 €	3000 €
Selection method	no selection	selection + BIC
Input variables	2 MANAG	2 MANAG
		4 HAB

- Hierarchy according to cost and accuracy
 → useful to simplify data collection
- Important for decision making

ACKNOWLEDGMENTS

- Data: INRA Saint Laurent de la Prée
- Financial support: ANR PICSEL (resp. D. Makowski)

This is bird 1

and bird 2

muriel.tichit@agroparistech.fr