

Session 31 ekramer@tierzucht.uni-kiel.de

Faculty of Agricultural and Nutritional Sciences

Christian-Albrechts-University of Kiel Institute of Animal Breeding and Husbandry

Mastitis and lameness detection using different statistical methods

NUNQUAM

E. Kramer¹, D. Cavero², E. Stamer³ and J. Krieter¹

¹Institute of Animal Breeding and Husbandry Christian-Albrechts-University of Kiel ²Lohmann Tierzucht GmbH ³TiDa Tier und Daten GmbH

Introduction

- Mastitis and lameness:
 - 1. Increasing incidence of diseases such as mastitis or lameness
 - 2. Decreasing time for detection of diseases by farm staff
 - 3. Economical relevance of mastitis and lameness

Mastitis costs: 150 – 200 €/ cow/ year (DVG, 2002)

Lameness costs: 312 €/ cow/ year (KÖNIG and LANDMANN, 2008)

Introduction

- Preconditions for automated disease detection
 - Automatic delivery of repeated measures for every cow with the use of adequate sensor technique in the barn
 - Data processing with management systems and transformation into reliable daily alert lists for the farmers
 - Our objective: Application of different methods for an early detection of mastitis and lameness

Data description

- Dairy research farm Futterkamp of the Chamber of Agriculture of Schleswig-Holstein
- Data collection period: August 2006 February 2007
- ~ 13,500 observations, 135 lactations of 118 cows

- 90 lactations
- 9,074 records
- 50 cows/day on average

- 45 lactations
- 4,604 records
- 30 cows/day on average

Test data

Data recording (Futterkamp)

Parameter

Milk yield Milk solids

- Fat-%, protein-%
- SCC and urea content

Live weight

Water intake

Feed intake

Activity

Reproduction (calving, pregnancy, insemination)

Health

(treatments of diseases)

Body condition score

Recording frequency

each milking weekly

each milking

each visit at the water trough

each visit at the feeding trough

each hour permanently

monthly

Material – Input variables

Means (\overline{x}) and standard deviations (s) of the input traits

Trait	Unit	X	S
Milk yield	(kg)	34.0	7.9
Dry matter intake	(kg)	20.7	3.7
Water intake	(kg)	85.3	17.4
Feeding visits	(n)	51.9	21.5
Feeding time	(min)	180.0	51.5

- Output variables (reference data):
 - Claw and leg diseases: 2 definitions:
 - Day of treatment including 3 days before (Treat3)
 - Day of treatment including 5 days before (Treat5)
 - Mastitis: 2 definitions:
 - Day of treatment and/or SCC >400 including 2 days before treatment/measurement ((Treat400)2)
 - Day of treatment and/or SCC >400 including 4 days before treatment/measurement ((Treat400)4)
 - "Disease blocks"
 - > 6 days after last treatment considered as unknown days

Definition of claw disease days

<u>nt</u>	Treatment	Date	Cow
disease block: Treat3 (day of	0	25AUG06	0002
	0	26AUG06	0002
treatment and the 3 days	0	27AUG06	0002
before)	0	28AUG06	0002
	1	29AUG06	0002
	1	30AUG06	0002
	1	31AUG06	0002
unknown	0	01SEP06	0002
(6 days after last	0	02SEP06	0002
	0	03SEP06	0002
treatment)	0	04SEP06	0002
	0	05SEP06	0002
	0	06SEP06	0002
boolthy	0	07SEP06	0002
nearing	0	08SEP06	0002
	0	09SEP06	0002
	0	10SEP06	0002
	0	11SEP06	0002
	0	12SEP06	0002
	0	13SEP06	0002

Disease distribution

- Cows with at least 1 case of mastitis : 13.4% of all cows
- Cows with at least 1 case of lameness: 25.2% of all cows

Training data for the two definitions of mastitis (81 cows)

Definition	Days of mastitis	Days of health	Days of Mastitis/ days of health
(Treat 400)2	124	8556	1.4%
(Treat 400)4	205	8457	2.4%

Methods

- Fuzzy Logic, Neurofuzzy
 - Fuzzification (transformation into linguistic variables)
 - Set of rules ("if-then-rules") and fuzzy inference
 - Defuzzification (scalar one output value)
- Input parameter for the lameness detection models:
 - Milk yield, dry matter intake, water intake, dry matter intake behaviour, activity, information about preliminary cases of lameness
- Input parameter for the mastitis detection models:
 - Milk yield, dry matter intake, dry matter intake behaviour, information about preliminary mastitis cases

Multivariate analysis - Results lameness

Classification parameters of lameness detection from the training and the test data by the fuzzy logic models

Training	Fuzzy	Block	Specificity	Error rate	TP	FP
data	model	sensitivity			/day	/day
Treat5	Fuzzy	75.0	70.1	98.4	0.3	20.7
Treat5	Neurofuzzy	92.9	77.0	97.0	0.5	15.6
Test data						
Treat5	Fuzzy	72.7	75.4	98.8	0.2	17.3
Treat5	Neurofuzzy	70.0	77.4	97.6	0.4	15.7

TP = true positive; **FP** = false positive

Treat 5 = disease block: day of treatment and 5 days before

Average herd size: training data: 50 cows; test data: 34 cows

Multivariate analysis - Results mastitis

Classification parameters of mastitis detection from the training and the test data by the fuzzy logic models

Training	Fuzzy	Block-	Specificity	Error rate	TP	FP
data	model	sensitivity			/day	/day
(Treat400)4	Fuzzy	78.0	77.5	96.5	0.6	15.5
(Treat400)4	Neurofuzzy	82.4	72.5	94.4	1.1	18.5
Test data						
(Treat400)4	Fuzzy	94.1	83.6	95.0	0.6	11.3
(Treat400)4	Neurofuzzy	85.7	76.8	95.8	0.7	16.1

TP = true positive; **FP** = false positive

(Treat400)4 = disease block: day of treatment or SCC>400 measurement and 4 days before

Average herd size: training data: 50 cows; test data: 34 cows

Summary and Conclusion

- Traits used in this dataset did not seem to be suitable to detect diseases such as lameness or mastitis
 - Development of other sensor techniques necessary ("DCC/OCC", *DeLaval* and "StepMetrix", *Boumatic*)
- Huge variance of the observed traits between and within cows
 - Detecting unique patterns before and during a disease is difficult.
- "Adverse" ratio between disease days and days of health
 - > High error rates are anticipated.

Thank you for attention!

