Relevance of purebred information for predicting genetic merit of survival at farrowing of crossbred piglets

UNIVERSA UNIVERSIS PATAVINA LIBERTAS

A. Cecchinato¹, G. de los Campos², D. Gianola², L. Gallo¹, and P. Carnier¹

¹ Department of Animal Science, University of Padova, Italy

² Department of Animal Science, University of Wisconsin, USA

alessio.cecchinato@unipd.it

UNIVERSA PATAVINA LIBERTAS

Introduction

In a commercial pig-breeding program:

- Economic importance is focused on crossbred performance
- Selection is largely carried out in nuclei of purebreds
- Animals are raised in different environments

nucleus

PATAVINA LIBERTAS

Genotype x environment interaction (**G x E**):

- Measured by the genetic correlation between phenotypes for the same genotype in different environments (Falconer, 1952)
- Reciprocal recurrent selection (RRS)
- Combined purebred and crossbred selection (CCPS)
- Use of data recorded only in crossbreds for evaluation of purebreds

Ø

PATAVINA

- Piglet farrowing survival is relevant
 - meconomical: estimated loss for each piglet dead ~ 15\$
 USA (NSIF, 2000) and 14 € Italy (C.R.P.A., 2006)
 - **animal welfare**: acceptability of the production system by the consumer
 - Additive genetic variation is large enough to be exploited in breeding programs (Grandison et al., 2002; Knol et al., 2002; Lund et al., 2008)
 - Does purebred performance (in nucleus) predict accurately outcomes in crossbreds (commercial tier) ?

 Infer (co)variance components for farrowing survival in purebred sire line and crossbred pigs

Data

UNIVERSA UNIVERSIS PATAVINA LIBERTAS

- 13,643 crossbreds (1,213 litters)
- born from 2000 to 2006
- originated by mating:

- data recorded (nucleus and commercial farm)
 - routine data (identity, sex, litter, etc.)
 - mpiglet mortality (dead or alive at birth)

O

Statistical analysis

Bayesian bivariate threshold model

$$\begin{pmatrix} \widetilde{\mathbf{y}}_1 \\ \widetilde{\mathbf{y}}_2 \end{pmatrix} = \begin{pmatrix} \mathbf{X}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{X}_2 \end{pmatrix} \begin{pmatrix} \boldsymbol{\beta}_1 \\ \boldsymbol{\beta}_2 \end{pmatrix} + \begin{pmatrix} \mathbf{Z}_{1s} & \mathbf{0} \\ \mathbf{0} & \mathbf{Z}_{2s} \end{pmatrix} \begin{pmatrix} \mathbf{s}_1 \\ \mathbf{s}_2 \end{pmatrix} + \begin{pmatrix} \mathbf{Z}_{1d} & \mathbf{0} \\ \mathbf{0} & \mathbf{Z}_{2d} \end{pmatrix} \begin{pmatrix} \mathbf{d}_1 \\ \mathbf{d}_2 \end{pmatrix} + \begin{pmatrix} \mathbf{Z}_{1l} & \mathbf{0} \\ \mathbf{0} & \mathbf{Z}_{2l} \end{pmatrix} \begin{pmatrix} \mathbf{l}_1 \\ \mathbf{l}_2 \end{pmatrix} + \begin{pmatrix} \boldsymbol{\epsilon}_1 \\ \boldsymbol{\epsilon}_2 \end{pmatrix}$$

where:

- $\widetilde{\boldsymbol{y}}_1$ $\widetilde{\boldsymbol{y}}_2$ is a vector to liability to survival for pure and crossbred
- β_1 β_2 vector of non genetic effects (sex, litter size, parity of the dam, year-month of birth)
- $\mathbf{S}_1 \ \mathbf{S}_2$ vector of sire effects
- $\mathbf{d}_1 \mathbf{d}_2$ vector of dam effects
- $\mathbf{l}_1 \mathbf{l}_2$ vector of litter effects
- ε₁ ε₂ vector of residual effects

Statistical analysis

UNIVERSA UNIVERSIS PATAVINA LIBERTAS

$$p(\mathbf{s}_{1},\mathbf{s}_{2},\mathbf{d}_{1},\mathbf{d}_{2},\mathbf{l}_{1},\mathbf{l}_{2},\boldsymbol{\beta}_{1},\boldsymbol{\beta}_{2},\mathbf{G}_{0sd},\sigma_{d2}^{2},\sigma_{l1}^{2},\sigma_{l2}^{2}) = p(\mathbf{\beta}_{1},\mathbf{\beta}_{2})p(\mathbf{s}_{1},\mathbf{s}_{2},\mathbf{d}_{1} | \mathbf{G}_{0})p(\mathbf{d}_{2} | \sigma_{d2}^{2})p(\mathbf{l}_{1} | \sigma_{l1}^{2})p(\mathbf{l}_{2} | \sigma_{l2}^{2})$$
$$\times p(\mathbf{G}_{0})p(\sigma_{d2}^{2})p(\sigma_{l1}^{2})p(\sigma_{l2}^{2})p(\sigma_{l2}^{2})p(\sigma_{e1}^{2})p(\sigma_{e2}^{2})$$

$$\mathbf{G}_{0} = \begin{pmatrix} \boldsymbol{\sigma}_{s1}^{2} & Symm \\ \boldsymbol{\sigma}_{s1,s2} & \boldsymbol{\sigma}_{s2}^{2} \\ \boldsymbol{\sigma}_{d1,s1} & \boldsymbol{\sigma}_{d1,s2} & \boldsymbol{\sigma}_{d1}^{2} \end{pmatrix}$$

 LW-derived dams (dams of crossed animals) are unrelated to individuals in the sire nucleus

LIBERTAS

Model comparison

• Four models evaluated using the Bayesian information criterion (**BIC**, Schwartz, 1978):

- M1 litter
- M2 litter + dam
- M3 litter + sire
- M4 litter + dam + sire
- Convergence assessed by inspection of trace plots
- After burn-in (20,000) the number of samples were 600,000 for M1 to M4 respectively

Descriptive statistics of farrowing survival in purebred and crossbred line

UNIVERSA UNIVERSIS PATAVINA LIBERTAS

	Number or value		
Characteristics	Purebred	Crossbred	
Total number of piglets born	39,919	13,643	
Survival at birth (%)	89.41	92.79	
Number of litters	3,162	1,213	
Number of sows	1,413	460	
Number of boars	168	168	

UNIVERSA UNIVERSIS PATAVINA LIBERTAS

BIC¹ Model N. of Log-Likelihood (random effects) variance and M2 **M3** M4 covariance M1 (Litter) -11,470 4 0 M2 (Litter+Dam) 6 15.83 -11,467 36.73 20.90 M3 (Litter+Sire) 7 -11,472 M4 (Litter+Dam+Sire) -11,468 10 60.61 44.78 23.87

Log-Likelihood value and BIC

¹BICr,s = -2 (logLik r- logLik s) – (Pr- Ps) log(N)

Posterior means (SD) for (co)variance components of farrowing survival by model and trait (pure/crossbred)

Model	Component	Purebred		Crossbred
M1	σ^2_{litter}	0.407 (0.025)		0.295 (0.035)
M2	σ^2_{litter}	0.357 (0.024)		0.214 (0.032)
	σ^2_{dam}	0.077 (0.023)		0.112 (0.034)
M3	σ^2_{litter}	0.393 (0.024)		0.268 (0.035)
	σ^2_{sire}	0.021 (0.009)		0.033 (0.021)
	σ _{sire (pure-cross)}		0.0015 (0.011)	
M4	σ^2_{litter}	0.347 (0.025)		0.189 (0.032)
	σ^2_{dam}	0.078 (0.020)		0.121 (0.034)
	σ^2_{sire}	0.018 (0.008)		0.031 (0.018)
	$\sigma_{\rm sire \ (pure-cross)}$		0.006 (0.008)	
	$\sigma_{dam \ pure \ - \ sire \ pure}$		0.005 (0.011)	
	$\sigma_{dam pure - sire cross}$		0.002 (0.016)	

Posterior means, SD, Monte Carlo standard error of heritability and genetic correlation for farrowing survival (M 4)

UNIVERSA UNIVERSIS PATAVINA LIBERTAS

				HPD-95%	
Component	Mean	SD	Monte Carlo		
			Standard Error	Lower bound	Upper bound
h ² purbred	0.05	0.02	0.002	0.01	0.09
h ² crossbred	0.09	0.05	0.006	0.01	0.19
r _{sire pure-cross}	0.24	0.33	0.037	-0.38	0.82
r _{dam pure} - sire pure	0.17	0.28	0.024	-0.42	0.68
r _{dam pure} - sire cross	0.03	0.32	0.033	-0.56	0.63

LIBERTAS

Conclusions

- Genetic variance (sire effects) on piglet survival is large enough to be exploited
- Genetic correlation is moderate, and a 95% Bayesian confidence region included zero
- Traits measured (mortality in pure and cross) are different
- Results suggest that genetic progress expected in crossbred when selection is based on purebred may be nil
- Breeding goal should be at the commercial level

Thanks for your attention!

The authors wish to thank the Gorzagri s.s. for providing data used in this study

Alessio Cecchinato Department of Animal Science – Padova - Italy

Marginal posterior densities and trace plots of heritability of sire variances and of the correlation between the sire effects on pure and crossbred animals (M 4)

6

Posterior means, SD, Monte Carlo standard error of heritability and genetic correlation for farrowing survival (M 4^a)

UNIVERSA UNIVERSIS PATAVINA

LIBERTAS HPD-95% SD Monte Carlo Mean Component Standard Error Upper Lower bound bound h²purbred 0.05 0.02 0.002 0.01 0.09 h²crossbred 0.09 0.05 0.006 0.01 0.19 0.25 0.33 0.037 -0.38 0.82 ^rsire pure-cross 0.18 0.28 0.024 -0.42 0.68 dam pure - sire pure 0.040.32 0.033 -0.56 0.63 rdam pure - sire cross

^a model without the litter effect

