

North American perspective on developments in performance testing of dairy cattle and applications in breeding programs

Dr. Kent Weigel Department of Dairy Science University of Wisconsin, USA

Outline

- Traditional milk recording
- Today's functional traits
- Herd management software
- Other novel traits
- Impact of genomic selection

Traditional Milk Recording

Milk Recording, by Plan

Type of Plan	1998	2008
Supervised, all milk weights, all components	20.7%	16.4%
Supervised, all milk weights, AM-PM components	8.7%	13.8%
Supervised AM-PM milk weights, AM-PM components	48.3%	58.6%
Supervised, milk weights only (no components)	3.3%	1.4%
Unsupervised (owner-sampler)	18.7%	9.7%
Total herds	38,920	23,005
Total cows	4,446,460	4,414,821

48% of the USA cow population **(**

Progeny Testing, by Stud

Breeding Company	No. Active Cooperator Herds	No. Bulls Sampled in USA per year	Ratio
ABS Global	1,989	240	8:1
Accelerated Genetics	2,321	161	14:1
Alta Genetics	170	185	<1:1
Genex-CRI	1,304	252	5:1
New Generation Genetics	95	12	8:1
Select Sires	2,819	351	8:1
Semex USA	1,645	64	26:1
Taurus Service	874	17	51:1
Total (unique)	11,218 (7,619)	1,282	(6:1)

Progeny Testing, by Herd

Percentage of Cooperator Herds *	Percentage of Calves
Top 1% (76 herds)	20.3%
Top 2.5% (190 herds)	34.1%
Top 5% (381 herds)	47.7%
Top 10% (762 herds)	62.7%
Top 25% (1,905 herds)	80.8%
Top 50% (3,809 herds)	92.4%
Total (7,619 herds)	100.0%

* Note that the USA has 23,005 milk-recorded herds and approximately 48,000 total dairy herds

Progeny Testing, by Year (Holstein)

Birth Year of Bull	Bulls Sampled per Year	Median Number of Daughters	Median Number of Herds	Median Contemporary Group Size
1986 to 1988	1,273	63	46	20
1989 to 1991	1,424	66	48	23
1992 to 1994	1,526	67	49	28
1995 to 1997	1,322	83	59	37
1998 to 2000	1,245	86	60	43
2001 to 2003	1,194	89	58	55

Today's Functional Traits

Linear type traits

- 4 body traits
 - economic value -4%
- early 1980's · economic 1980's · 2 rump traits
 - economic value 0%
 - 4 mobility traits
 - economic value +3%
 - 8 udder traits
 - economic value +6%
 - "OK" as indirect predictors

Longevity

- length of productive life
 - economic value +17%
 - available late in life

since 1994

Udder health

- somatic cell score
 - economic value -9%
 - indirect predictor

Female fertility

- daughter pregnancy rate
 - economic value +9%
 - data quality challenges

Calving ease

- direct and maternal
 - economic value +2.4%
 - mainly used for mating

Stillbirth rate

- direct and maternal
 - economic value +3.6%
 - recorded in most herds

Herd Management Software

Electronic capture of data

- prevalent in large herds
- primary source of data for genetic evaluations
- continuous monitoring
- manufacturer-specific
- examples
 - flow rate of milk
 - physical activity

Health Disorders

Table 1. On-farm codes or acronyms used to record the 6 health disorders analyzed in the present study.								
Displaced abomasum	Ketosis	Mastitis	Lameness	Cystic ovaries	Metritis			
DA D.A. LDA RDA L-DA R-DA DAS DALF DART DAR DAL	KETOSIS KETOTIC KET KETO KETOS KET1 KET2 KET3 KET1 KETR KETR KETR KETB KETH KETD KETP METB ¹	MAST RF LF RR LR MLFQ MLFQ MRFQ MRFQ MLF MLR MRF RFMT LFMT LFMT LFMT LRMT RRMT M2TIT MASTALL MAST2Q MAST3Q	ABCS ABSS HROT HFROT LAMINIT LAME WRAP LAMI LIMP SOREFT ABCSRR ABCSLR FOOT FEET	CYST CYSTO CYSTIC RCYST LCYST CYSTRO CYSTLO	MET/RP MET METR RP RETAINP RETP INFU INF MTRI RETN RPL RPIN RPRE UCND RTPL UINF PYOM UTCN RE-PLA			
¹ Used as an a	¹ Used as an account for batasis in hards with the DCDADT software only							

Used as an acronym for ketosis in nerds with the PODART software only.

(Zwald et al., 2004)

Heritability Estimates

Table 4. Heritability estimates $(\pm SE)$ from the first lactation and all lactation analyses for each health trait and for pooled incidence of any disease (among these 6 diseases) between calving and 50 d postpartum.

Disorder	Analysis	Heritability		
Displaced abomasum	1st lactation	0.18 ± 0.010		
	All lactations	0.15 ± 0.006		
Ketosis	1st lactation	0.11 ± 0.007		
	All lactations	0.06 ± 0.005		
Mastitis	1st lactation	0.10 ± 0.003		
	All lactations	0.09 ± 0.003		
Lameness	1st lactation	0.07 ± 0.003		
	All lactations	0.06 ± 0.003		
Cystic ovaries	1st lactation	0.08 ± 0.005		
•	All lactations	0.05 ± 0.005		
Metritis	1st lactation	0.08 ± 0.004		
	All lactations	0.07 ± 0.003		
Any disease within 50 d postpartum	1st lactation	0.12 ± 0.005		
	All lactations	0.10 ± 0.004		

(Zwald et al., 2004)

Sire PTAs

Figure 1. Distribution of sire PTA, expressed as probabilities of disease, for displaced abomasum (DA), ketosis (KET), metritis (MET), mastitis (MAST), lameness (LAME), and cystic ovaries (CYST).

(Zwald et al., 2004)

Health Database

Health Events (up to 20 segments)

Type of health event code Date of health event (YYYYMMDD)

Health Traits	
Cystic Ovary	CYST
Diarrhea/Scours	DIAR
Digestive Problem/Off Feed	DIGE
Displaced Abomasum	DA
Downer Cow	DOWN
Dystocia	DYST
Johne's Disease (clinical)	JOHN
Ketosis/Acetonemia	KETO
Lameness	LAME
Mastitis (clinical)	MAST
Metritis	METR
Milk Fever/Hypocalcemia	MILK
Nervous System Problem	NERV
Reproductive problem other than CYST, DYST, METR, RETP	REPR
Respiratory Problem	RESP
Retained Placenta	RETP
Stillbirth/Perinatal Survival	STIL
Teat Injury	TEAT
Udder Edema	EDEM

USDA Format 6

Management Traits				
Body Condition Score	BCS-			
Milking Speed	SPEE			
Temperament	TEMP			

Infectious diseases and metabolic disorders

- differences in exposure
 - e.g., mastitis pathogens
- inconclusive test results
 - e.g., Johne's disease
- incomplete reporting
 - incorrect diagnosis
 - underestimated severity
 - selective treatment

- periodic recording
 - record during outbreak
 - cease once problem solved
 - may require meta-analysis
- identification of "outliers"
 - identify cows to genotype
 - affected individuals
 - healthy contemporaries
 - case-control studies

Challenges with "outliers"

- biological variation
 - genetic predisposition
 - illness, estrus, etc.
- random variation
 - human influence or error
 - RFID reader error

Reproductive Database

Reproductive Events (up to 20 segments)

Type of reproductive event code

Date of reproductive event (YYYYMMDD)

- H Observed in estrus (heat) but not inseminated
- S Synchronized estrus event (injection or other methods)
- A Artificial insemination
- N Natural service breeding
- E Embryo donation
- I Embryo implantation (reporting sire of embryo)
- J Embryo implantation (reporting dam of embryo)
- P Confirmed pregnant
- O Confirmed not pregnant (open)
- X Cow given a "do not breed" designation
- G AI breeding with gender selected semen

Milking Duration

Figure 1. Distribution of the mean of single, weekly measurements of milking duration for individual cows in the present study.

(Zwald et al., 2005)

Table 2. Estimated genetic parameters for milking duration, based on a single measurement per cow per week.

Parameter	Posterior mean	Posterior SD
Herd-test date variance (min ²)	1.13	0.18
Sire variance (min ²)	0.09	0.03
Cow variance (min ²)	1.01	0.02
Residual variance (min ²)	1.00	0.01
Heritability	0.17	0.03

Other Novel Traits

Gestation Length

(1st parity Holsteins)

(López de Maturana et al., 2008)

Gestation Length

7HO6417 O Man 14,871 calves 1,387 herds

Direct Gestation Length PTA: -3.6 days

Body Temperature

Internal Body Temperature				Amb	ient				
Date & Time	Cow 1	Cow 2	Cow 3	Cow 4	Cow 4	Cow 6	Cow 7	Temp.	Humid.
7/6/2005 8:00	101.71	101.56	102.11	101.01	101.26	101.81	100.91	83.40	30.30
7/6/2005 8:05	101.76	101.61	102.06	100.91	101.26	101.76	100.81	84.83	30.30
7/6/2005 8:10	101.81	101.61	101.91	100.81	101.26	101.81	100.76	86.32	29.40
7/6/2005 8:15	101.91	101.66	101.81	100.76	101.31	101.81	100.76	87.50	29.40
7/6/2005 8:20	101.96	101.66	101.76	100.76	101.41	101.86	100.76	88.78	28.90
7/6/2005 8:25	102.01	101.71	101.76	100.76	101.51	101.91	100.76	88.83	28.40
7/6/2005 8:30	102.01	101.76	101.76	100.81	101.56	101.86	100.81	88.46	28.40
7/6/2005 8:35	101.91	101.76	101.81	100.76	101.56	101.91	100.86	88.32	28.00
7/6/2005 8:40	101.81	101.76	101.86	100.81	101.56	101.91	100.86	88.65	28.00
7/6/2005 8:45	101.76	101.76	101.91	100.86	101.56	101.96	100.86	88.51	28.00
7/6/2005 8:50	101.71	101.66	101.91	100.91	101.56	101.96	100.81	88.10	28.00
7/6/2005 8:55	101.66	101.56	101.96	101.01	101.61	101.96	100.71	87.91	27.50
7/6/2005 9:00	101.66	101.51	101.91	101.11	101.61	101.96	100.71	87.96	27.00
7/6/2005 9:05	101.66	101.46	101.86	101.16	101.56	102.01	100.71	88.00	26.60
7/6/2005 9:10	101.71	101.46	101.86	101.16	101.51	102.11	100.76	88.42	26.10
7/6/2005 9:15	101.76	101.46	101.91	101.21	101.56	102.22	100.81	89.38	25.60
7/6/2005 9:20	101.81	101.51	101.81	101.31	101.61	102.27	100.96	90.96	24.30
7/6/2005 9:25	101.81	101.46	101.66	101.36	101.66	102.27	101.06	92.12	23.80
7/6/2005 9:30	101.71	101.46	101.56	101.36	101.66	102.11	101.16	93.07	22.90
7/6/2005 9:35	101.56	101.46	101.41	101.31	101.66	102.01	101.16	93.68	22.50
					•	•	•		
	.								
		•							

(Schefers et al., 2008)

barn or weather station

Indicators of cow health

- body condition score
 - opposite of dairy form?
- locomotion score
 - same as feet & leg score?
- behavior
 - walking, lying, eating
- hormones and enzymes
 - BHBA, progesterone, etc.

Indicators of product value

- Mid-IR spectrometry
 - caseins
 - fatty acids
 - minerals
- Indicators of efficiency
 - body weight
 - feeding behavior
 - number of meals
 - intake at each meal

Impact of Genomic Selection

What will be the role of progeny testing in the future?

Progeny testing

- fewer bulls, fewer herds
- may not be necessary at all
- impact on milk recording ???
- Sire acquisitions
 - multi-stage genomic screening
 - dedicated supplier herds
 - long-term contracts
 - routine genotyping
 - detailed phenotypes

Are traditional "all inclusive" data collection systems the best strategy in the future?

Potential sources of data

- experimental herds
- selected cooperator herds
- nucleus or supplier herds
- custom heifer growers
- calf ranches
- veterinary databases
 - Johne's, mastitis, etc.
 - sire ID via DNA testing
 - case-control studies

UW-Madison Dairy Science...Committed to Excellence in *Research, Extension and Instruction*

