Session 25.

Application of social effects in a pig breeding program

Naomi Duijvesteijn* and Rob Bergsma (naomi.duijvesteijn@ipg.nl)

Social interactions in pigs

Animals (especially family members) are willing to help each other in a group to keep the genes of the family. (Hamilton, 1964)

Introduction

- Reduced genetic response and animal well-being
- Competition or cooperation for limited resources

Such as feed intake

Material and Method
Theory (1/2)

Inheritance model for traits affected by social interactions (Griffing 1967):

$$P_{i} = A_{D,i} + E_{D,i} + \sum_{i \neq j}^{n} A_{S,j} + \sum_{i \neq j}^{n} E_{S,j}$$

Material and method Theory (2/2)

Response to selection

Social interactions
$$\Delta G = iR_{IH} \underbrace{\sigma_A} \longrightarrow TBV_i = A_{D,i} + (n-1)A_{S,i}$$

i is the selection intensity, R_{IH} is the accuracy of selection.

Parameters used

Trait: Growth rate

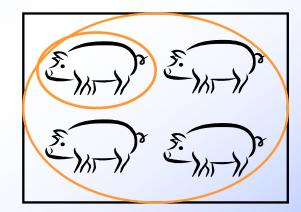
Average group size: 8.5

Selection intensity: 1.627

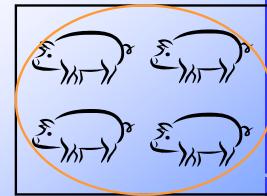
Table 1. Parameters for a relatedness of 0.18 (Bergsma et al., 2008).

	Classical analyses	Social interactions included	
Phenotypic variance	7023	7324	
Direct genetic variance	1780	1522	
Associative genetic variance	-	51	
DA genetic covariance	-	56	
Heritable variation	0.25	0.71	
r _A	-	0.20	

r_A= Genetic correlation between direct and associative effect



Material and method Selection methods


• Multilevel selection
$$C_i = P_i + g \sum_{j \neq i}^n P_j$$

Individual selection (g=0)

Selection in between

Group selection (g=1)

Material and method Selection methods

BLUP simulation

- Uses information from full sibs, half sibs and parents
- Selection on TBV
- 1 generation: 100 replicates
- Estimates random effects and fixed effects

$$y = Xb + Za_D + Za_S + e$$

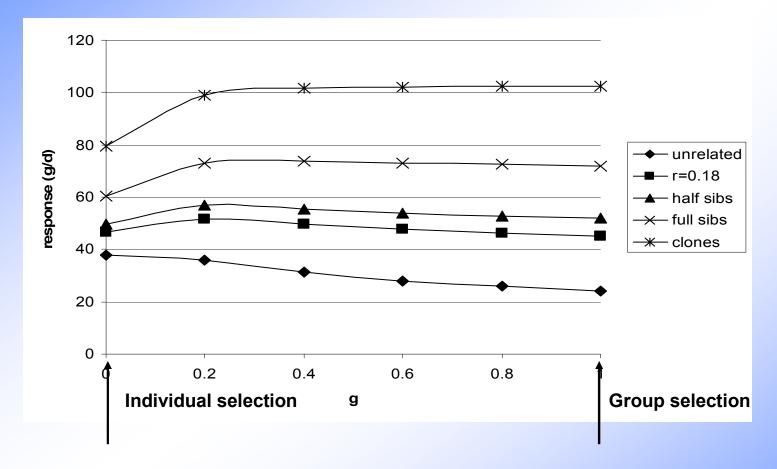
Results Mass selection

Selection response:

'Classical' $\Delta G = 1.627 * \sqrt{0.25} * 42 = 34 \text{ g/d}$

Social interactions incl. $\Delta G = 46 \text{ g/d}$

ratio ≈ 1.35


Accuracy

'Classical' $r_{IH} = \sqrt{h^2} = \sqrt{0.25} = 0.50$

Social interactions incl. $r_{IH} = 0.39$

Results Multilevel selection

Results BLUP

	Group composition	r _{IH}	∆G (g/d)
BLUP	Unrelated (r=0)	0.50	59
BLUP	Full sibs (r=0.5)	0.79	93
BLUP_Classic		0.69	47

Ratio ≈ 2.0

Conclusions

- BLUP would be the best selection method for feed intake in pigs
 - Accuracy of estimates of social effects increases with increased relatedness within groups (pens)
 - Takes fixed and random effects into account
 - More traits can be included

Are we breeding for social pigs??

Institute for Pig Genetics

