

Breeding for resistance to footrot in UK sheep

J.Conington, G.J.Nieuwhof^{1*}, A.McLaren, N.Lambe, B.Hosie, S.C.Bishop² and L.Bünger

> SAC, Edinburgh, UK ¹Meat & Livestock Commission, Milton Keynes, UK ²Roslin Institute and RDSVS, Edinburgh, UK

*ADHIS Pty Ltd., Dept. Primary Industries, Victoria, NSW, Australia.

UK Government & Industry - funded project

"Breeding for resistance to Footrot, combining molecular and phenotypic approaches"

Aim: Investigate the 'best' way to breed for footrot resistance in sheep

Data collected - (55	 from flocks with know ,468 actual foot scores) 	n pedigree 👔 s A c
		RA C
Texel	Blackface	<u>F1 "Mule" (ewe)</u>
2006 & 2007	2005 & 2006	2005 & 2006
17 flocks	5 flocks	3 flocks
5,893 records	6,132 records	1,842 records
Prevalence 29% ('06), 18.5% ('07) 27% (lambs)	Prevalence 17% ('05), 18% ('06) ewes 34% ('05) lambs	Prevalence 58% ('05), 43%('06)

Footrot score v	alidation		S A C
Score 0	Score 1	Score 2	
Score 3	S	core 4	

Foot score validation - Aims

- Test repeatability of scores
- Test for differences between scorers
- Account for other influences on foot score
- Ultimately..
 - Determine if use of score is a reliable and repeatable method of scoring foot lesions

	20)05	2	006
	Score 1	Score 2	Score 1	Score 2
Mule ewes	686	529	398	229
Blackface ewes	13	353	2	987

Results - Heritabilities

		Blackface ewes	Mules
Footrot	Underlying	0.19 (0.07)	0.12 (0.06)
(1+)	Observed	0.08 (0.02)	0.11 (0.06)
Severe	Underlying	0.26 (0.11)	0.19 (0.10)
Footrot (2+)	Observed	0.05 (0.02)	0.13 (0.07)

Results - Heritabilities

		Blackface ewes	Mules
Footrot	Underlying	0.19 <mark>(0.07)</mark>	0.12 (0.06)
	Observed	0.08 (0.02)	0.11 (0.06)
Severe	Underlying	0.26 (0.11)	0.19 (0.10)
Footrot	Observed	0.05 (0.02)	0.13 (0.07)

		Black	face	Μι	le
		Perm. Env.	h²	Perm. Env.	h²
Footrot	Underlying	0.04	0.19 (0.07)	0.10	0.12 (0.06)
	Observed	0.00	0.08 (0.02)	0.02	0.11 (0.06)
Severe	Underlying	0.07	0.26 (0.11)	0.14	0.19 (0.10)
Footrot	Observed	0.01	0.05 (0.02)	0.01	0.13 (0.07)

Are heritabilities affected by Prevalence?

Trait	model	All data	Preva	llence
			High	Low
Number		2987	1194	1793
Prevalence		0.18	0.30	0.10

Trait	model	All data	Preva	alence
			High	Low
Number		2987	1194	1793
Prevalence		0.18	0.30	0.10
Method of				
analysis	Observed	0.10 (0.03)	0.16 (0.06)	0.06 (0.04)

-

Are heritabilities affected by Prevalence?*

Trait	model	All data	Preva	llence
			High	Low
Number		2987	1194	1793
Prevalence		0.18	0.30	0.10
Method of	Underlying	0.21 (0.10)	0.36 (0.14)	0.06 (0.13)
analysis	Observed	0.10 (0.03)	0.16 (0.06)	0.06 (0.04)

*Nieuwhof et al., 2008 Animal 2:9: 1289-1296

	Blackface	Texel	
	h² (s.e.)	h² (s.e.)	
Footrot 0/1 Underlying	0	0.25 (0.102)	
Severe Footrot 0/2+ Underlying	0	0.24 (0.12)	
Observed	0	0.25 (0.084)	

	Geneti	c (s.e)]	
Lwt 8 wks	0.14	(0.294)		
Lwt 21 wks	-0.035	(0.163)		
Muscle depth	-0.068	(0.183)		
Fat depth (log ¹⁰)	0.273	(0.086)		
		(0.000)	J	

|--|

	Genetic (s.e)	Phenotypic (s.e)
Lwt 8 wks	0.14 (0.294)	0.022 (0.042)
Lwt 21 wks	-0.035 (0.163)	-0.03 (0.029)
Muscle depth	-0.068 (0.183)	-0.046 (0.028)
Fat depth (log ¹⁰)	0.273 (0.086)	0.05 (0.001)

- Selection to improve footrot in sheep is likely to bring both economic and animal welfare benefits
- Future use of gene marker tests and GWS for resistance to footrot
 - Results of gene marker validation will be known later this year

