

Session 21 59th Annual Meeting of the European Association for Animal Production Vilnius, Lithuania August 24th – 27 th, 2008 harangis@agr.unideb.hu

Comparison of ultrasound carcass traits in young beef bulls of three breeds

Sándor Harangi – Béla Béri University of Debrecen Centre for Agricultural- and Engineering Institute of Animal Husbandry

Introduction

- Selection of stock animals on the basis of carcass traits:
- I. with the evaluation of progenies' carcasses
 - *Progeny testing:* labourious, expensive process

average time period to prove a sire for carcass merit is 3 to 5 years

- **II.** with the use of real-time ultrasound (RTU):
 - a noninvasive method for estimating carcass traits on live animals
 - a quick, least expensive, accurate and precise method to obtain live-animal measures of body composition

Progeny testing: much easier and with less costs

- Advantages of using scan data:
 - additional information about carcass traits of that animal or its progeny
 - identifying sires or bloodlines that are superior or inferior
- Use of ultrasound technique: in some countries used widely in the evaluation of young bulls participating in self- or progeny performance test
- Self-performance test in Hungary: growing capacity, growth rate and phenotype of young bulls are measured

Aims

The main goals of our examination were to assess:

- how does the ultrasound parameters of three beef breeds change at the beginning and at the end of SPT
- how does the ribeye area and subcutaneous fat thickness increase during the self performance test
- what relationship exist between the ultrasound parameters at the beginning and at the end of SPT

Materials and methods

> Young beef bulls perform in self-performance test (SPT) made on farm

Subcutanous fat depth and ribeye area were measured at the beginning and at the end of SPT

Hungarian Simmental	Charolais	Limousin		
(n=19)	(n=16)	(n=11)		

Housing: animals were kept in small groups, on deep litter in barn with paddock

Feeding: During the testing period the animals were fed on silage, grass hay and concentrate on the ration of 100 kg live weight / 1 kg concentrate

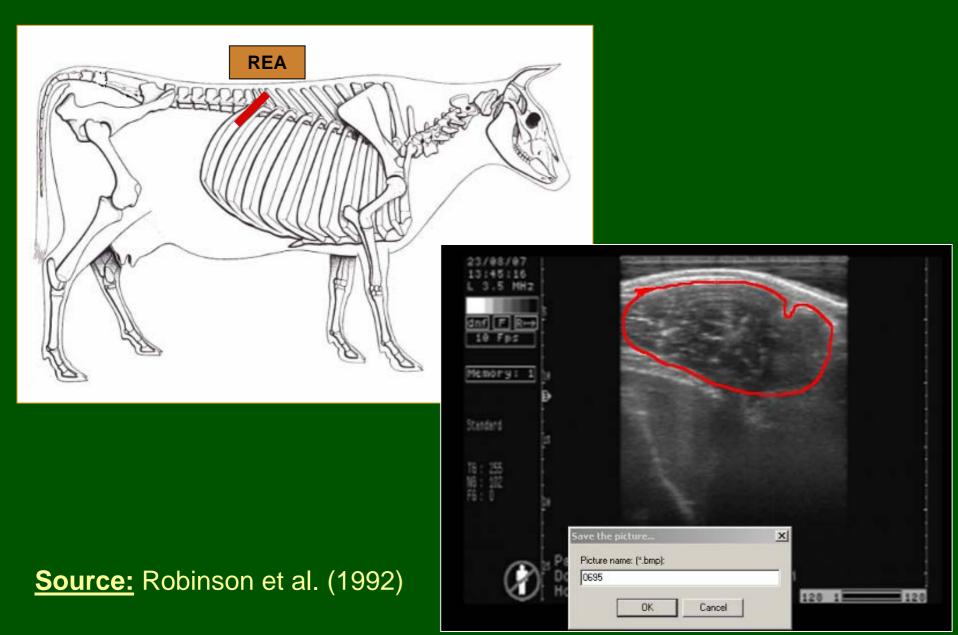
Ultrasound devices

Ultrasound machine:

Falco 100 real-time scanner

Transducer:

ASP - 3,5 MHz, 18 cm

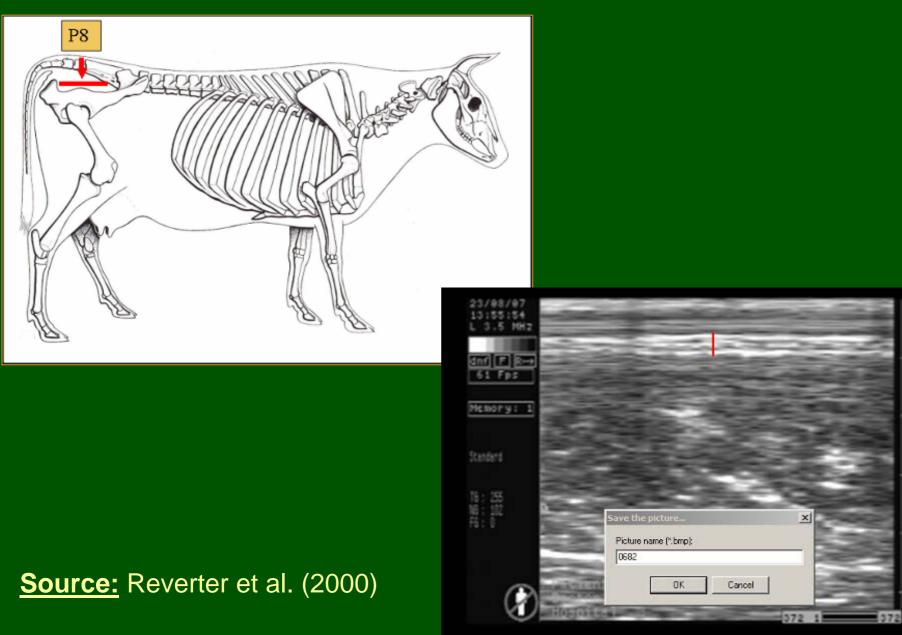

Measurement depth:

- Ribeye area : 23 cm
- Subcutaneous rump fat depth (P8): 5 cm

Image capturing, storing and analyzing:

- portable PC
- Ultrasound Engineer 3.0

Ribeye area – REA



Backfat thickness – BFAT

Source: Perkins et al. (1996)

P8 (subcutaneous rump fat depth at P8 site)

Results and discussion

Ultrasound parameters, age and live weight of the evaluated breeds at the beginning of self-performance test

Tulajdonságok	Limousin n=11	Hungarian Simmental n=19	Charolais n=16	Total n=46		
	$\overline{\chi}$ ± S					
Age, day	270.2±20.7ª	253.7±24.0ª	269.4±4.3ª	263.1±19.9		
Live weight, kg	332.8±54.2 ^{ab}	307.4±30.3ª	356.0±48.7b	330.4±47.6		
Ribeye area, cm ²	64.4±9.3 ^{ab}	59.9±6.9ª	67.8±10.9 ^b	63.7±9.5		
Backfat thickness, mm	2.16±0.29ª	2.49±0.54ª	2.11±0.44ª	2.28±0.48		
P8, mm	2.05±0.74ª	2.69±0.68b	2.37±0.62 ^{ab}	2.42±0.71		

a,b:Difference is significant on P<0.05 level between values containing different letters

Ultrasound parameters, age and live weight of the evaluated breeds at the end of self-performance test

Traits	Limousin n=11	Hungarian Simmental n=19	Charolais n=16	Total n=46		
	$\overline{\chi}\pm$ S					
Age, day	395.2±20.7ª	375.1±24.8ª	390.4±4.3ª	385.2±20.6		
Live weight, kg	506.0±54.8ª	502.3±44.0 ^a	517.3±60.7ª	508.4±52.2		
Ribeye area, cm ²	98.1±5.8ª	88.1±8.6 ^b	93.2±11.6 ^{ab}	92.3±9.9		
Backfat thickness, mm	3.74±0.60 ^{ab}	3.94±0.88b	3.28±0.63ª	3.66±0.78		
P8, mm	3.95±0.84ª	5.10±1.03b	3.91±0.91 ª	4.41±1.09		
Daily average gain, g/day	1363±109ª	1603±195 ^b	1333±189ª	1457±214		

a, b: Difference is significant on P<0.05 level between values containing different letters

Correlation coefficients of ultrasound measured parameters to each other and to other traits (n=46)

Traits		Beginning of self- performance test			End of self-performance test				
		Live weight	REA	P8	BFAT	Live weight	REA	P8	BFAT
		Correlation coefficient, r							
Be	Age	0.48**	NS	NS	NS		_		
ginr	Live weight		0.80**	0.31*	NS	0.85**			
Beginning	REA			NS	NS		0.74**		
of	P8				0.68**			0.62**	
SPT	BFAT								0.60**
m	Age					0.39**	NS	NS	NS
End of	Live weight						0.64**	NS	0.47**
f SPT	REA							NS	0.37**
Ť	P8								0.61**

Difference is significant on *P<0.05 level, on **P<0.01 level

Implications

- In Hungary it would be necessarry to utilize ultrasound carcass data in beef cattle genetic improvement programs. With our examination we would like to call the attention to this fact.
- Ultrasound measurements are suitable for selecting superior bull calves which can be entered in the self performance test on farm or on a test station.
- With RTU technique differences between young bulls in muscling and subcutaneous fat deposition can be revealed.
- In possession of scan data it is possible to identify sires that are superior for a particular trait of interest.

Thank you for your attention!