Contribution of Carbohydrate Binding Modules (CBMs) to decrease the dosage level of recombinant cellulases used to supplement a barley based diet for poultry

Teresa Ribeiro CIISA/FMV, Portugal

> EAAP 2008 Vilnius, Lituania

25th August 2008

⇐ Introduction

- What are NSP's?
- Why enzymatic suplementation?
- Cellulases and Hemicellulases arquitecture
- Role of Carbohydrate Binding Modules (CBM's)
- ¢ Aim
- ⇐ Experimental procedure
- ¢ Results
- ⇐ Conclusions

Introduction Non-Starch Polysaccharides

⇐ Important cell wall components

- Insoluble in water
 - Absorb water promove motility
 - Physic barrier decrease digestion efficiency
- Soluble in water
 - Anti-nutritive effects in monogastric:
 - Increase viscosity
 Performance

- Modification of gut phisiology
- Interaction with microflora

Enzyme Supplementation

• • Cellulases and Hemicellulases

✿ Modular Structures:

- Catalytic domains
 - Glycoside Hidrolases (GH's)
 - GH26 (B-1, 3-1, 4-glucanase)
 - GH5 (B-1,4-cellulase)
- Non-catalytic domains;
 - Carbohydrate Binding Modules (CBM's)
 - CBM11 (Binds both ß-1,4-glucan and ß-1,3-1,4mixed linked glucans)

• • Role of CBMs

- Promote a close and prolonged interactions enzyme – substrate
- ✿ Proximity effect potentiates catalysis
- Targeting effect important in the complex structure of cell walls

• • • AIM of this project

Control Con

• • Experimental Design

• • Results - High dosage

✿ Performance

Treatment	Body Weight	Weight Gain	Feed Ratio
C-	1158.0 ^b	1115.7 ^b	0.618
C+ (10U/kg)	1243.4 ^a	1200.8 ^a	0.602
H ₁ (30U/kg)	1240.4 ^a	1198.2 ^a	0.619
H ₂ (30U/kg)	1247.9 ^a	1205.9 ^a	0.623

• • Results - High dosage

⇐ Digesta Viscosity

Treatment	Duodenum + Jejunum	
C-	11.3ª	
C+ (10U/kg)	5.53 ^b	
H ₁ (30U/kg)	7.10 ^b	
H ₂ (30U/kg)	7.24 ^b	

• • • CBM effect redundant

- ⇐ Recombinant enzyme as effective as commercial preparation
- ⇐ CBM₁₁ was unable to promote the efficiency of the recombinant enzyme

⇐ Repeat experiment with lower enzyme levels

• • Results – Low Dosage

✿ Performance

Body Weight	Weight Gain	Feed Ratio
1146.5 ^a	1100.9 ^a	0.569
1205.6 ^b	1160.3 ^b	0.596
1191.7 ^{ab}	1145.8 ^{ab}	0.574
1237.6 ^b	1192.7 ^b	0.601
	Body Weight1146.5a1205.6b1191.7ab1237.6b	Body WeightWeight Gain1146.5a1100.9a1205.6b1160.3b1191.7ab1145.8ab1237.6b1192.7b

• • Results – Low Dosage

c Digesta Viscosity

Treatment	Duodenum + Jejunum	
C-	7.450 ^a	
C+ (10U/kg)	4.955 ^b	
H ₁ (10U/kg)	6.962ª	
H ₂ (10U/kg)	6.149 ^{ab}	

• • Integrity of enzymes

- Samples of the various GI compartments were recovered
- Cellulase activity was measured through plate assays and zymograme analysis

• • Conclusions

- Individual recombinant cellulases are as effective as commercial to improve the nutritive value of barley based diets for broilers;
- ⇐ CBMs improve the efficacy of feed cellulases used at lower dosage rates;
- ⇐ Together the data suggest that cellulases act primarly in initial portions of the GI tract.

• • Acknowledgments

¢ FMV

- Patrícia Ponte
- Catarina Guerreiro
- Helena Santos
- I José Prates
- Carlos Fontes
- ⇐ Fundação da Ciência e Tecnologia
- ⇐ European Association for Animal Production

¢ ISA

I Madalena Lordelo