Nutritive evaluation of three Acacia species

O.C. Moreira, J.R. Ribeiro, M.T.P. Dentinho

Unit of Animal Production - L INIA Fonte Boa-INRB, 2005-048 Vale de Santarém, Portugal.

N18.1

Acacia species are of special significance as source of feed for ruminant livestock, mainly in arid and semiarid regions. The objective of this study was the nutritive evaluation of *Acacia cyanophylla, Acacia dealbata, Acacia karroo* in May and November.

METHODOLOGY:

•Leaves of A. cyanophylla, A. dealbata, A. karroo, randomly chosen in the Centre of Portugal, were sampled in May and November.

•Chemical analysis: crude protein (CP), cell wall constituents (NDF, ADF, ADL) total phenols (TP), total tannins (TT) and macrominerals.

•Nutritive parameters: organic matter (OMD) digestibility and mineral (Ca, P, K, Mg) disappearances evaluated in a *Daisy® Rumen Incubator*, following the *ANKOM* Technology:

•0.5 g of sample per bag (50x55 mm, heat sealed),

•25 bags per incubation jar: duplicates of 7 test samples and 5 standards and 1 blank,

•incubation for 48h (rumen juice and buffer solution), washing and treatment with neutral detergent, drying to constant weight and analytical

•Statistical analysis - Data were analysed for the effect of species, period and their interactions using the GLM procedures of SAS.

RESULTS:

Table 1 - Organic constituents and in vitro digestibility of leaves of Acacia species (n=5)

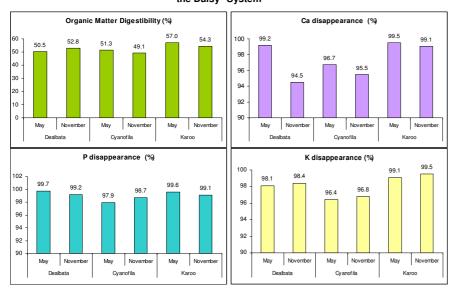

Species	Dealbata		Cyanofila		Karoo	
Period	May	November	May	November	May	Novembe
CP 1	15.9	18.4	16.9	16.6	14.1	18.9
NDF ¹	44.6	45.1	44.0	38.9	37.5	35.5
ADF ¹	33.1	29.4	31.7	26.5	29.6	19.7
ADL ¹	21.2	19.1	17.5	13.7	17.2	10.0
TP ²	5.85	6.36	2.79	3.85	1.39	2.51
TT ²	2.03	3.47	0.67	1.69	0.33	0.96

Table 2 - Mineral composition (% DM) of leaves of Acacia species (n=5)

Species Period	Dealbata		Cyanofila		Karoo	
	Мау	November	May	November	Мау	November
Ash	5.46	5.6	10.6	12.8	12.1	9.1
Ca	1.23	1.32	2.58	3.5	3.5	1.86
Р	0.11	0.14	0.13	0.15	0.13	0.22
Na	0.049	0.042	0.068	0.065	0.17	0.14
к	0.3	0.31	0.68	0.42	1.46	1.54
Mg	0.35	0.44	0.39	0.4	0.55	0.35

1 % of DM; 2 Tannic acid equivalent in % of DM

In vitro Digestibility and Ca, P and K Disappearances of Acacia species evaluated in the Daisy[®]System

CONCLUSIONS:

• Crude protein content is higher in November than in May (18.0 vs 15.6 %DM).

• Ca, P, Na, K, total phenols and tannins, varied among species. *A. Karroo* presented the higher mineral concentration and *A. dealbata* the higher phenolic and tannin contents.

• A. *Karroo* presented the lower cell wall contents (NDF, ADF and ADL) (P<0.001). The period only affected ADF and ADL with the lower levels observed in November.

•With exception for Mg, differences of *in vitro* parameters (P<0.05), were observed for the species. *A. dealbata* presented the lowest percentages of OMD (50.2),Ca (96.1) and K (96.6) disappearances.

