Comparison of Association Mapping Methods in Cattle Population

G. Sahana, B. Guldbrandtsen, L. Janss and M.S. Lund

Department of Genetics and Biotechnology Faculty of Agricultural Sciences University of Aarhus, Denmark

AARHUS UNIVERSITET

Faculty of Agricultural Sciences

Approaches to Mapping

- 1. Candidate gene studies
 - Association
 - Resequencing approaches
- 2. Genome-wide studies
 - Linkage analysis
 - Genome-wide association studies [Linkage disequilibrium (LD) mapping]

Association mapping

- Marker alleles are correlated with a trait on a population level
- Does not necessarily imply that markers are linked to (are close to) genes influencing the trait.
- Approaches
 - Case-control study
 - Family based methods

Limitation in cattle

- Complex pedigree
- Population structure
- Complex traits with very many genes individually of small effect
- Environmental influence
- Genetic heterogeneity underlying phenotype

Data Simulation

Generations and individuals

Marker & QTL

- 5 chromosomes 100 cM each
- 5000 biallelic markers
- 15 QTL with known position and effects
 - 1 QTL with 10%, 4 QTL with 5% and 10 QTL with 2% genetic variance
- Chromosome-5 had no QTL

Population evolves over 50 generations

- LD structure (drift, recombination)
- Allele frequencies change

MAF

LD

1.00

Phenotypes

- Heritability of the trait : 30%
- 50% genetic variance comes from 15 QTL, rest 50% was polygenic
- Breeding values were simulated assuming 100 daughters per sire
- 2000 individuals were selected randomly from 136 families
- 25 replications

Association Analysis

PETITIN ARCHINDIS STA

Methods

- Linear models (TASSEL/R)
 - Phenotype = Sire + genotype/haplotype
- Mixed model (DMU)
 - Phenotype = Fixed factors + polygene + SNP
- Bayesian approach (*iBays*)
 - Phenotype= Fixed factors + Polygene + Σ SNP

Genome length in cM

Genome length in cM

Genome length in cM

Power (QTL with 2% genetic variance)

A QTL was identified if a markers within 2cM region of the QTL location was significant

Methods

Mean error of QTL position

Precision was quantified as mean absolute error of position estimate

False Positives

- Single marker analysis and mixed model approach had type-I rate within expected limit
- Haplotype methods had very high Type-I error

Conclusions

- Mixed model approach had highest power in association mapping for QTL
- In general, Bayesian approach gave more precise location estimate
- The magnitude of QTL effect had little impact on precision
- Haplotype based methods had very high false positive rates