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Introduction 

Advances in molecular genetics have led to the identification of several genes and of genetic 
markers associated with genes that affect quantitative traits in livestock (quantitative trait 
locus, QTL). Once QTL are detected, the aim of animal breeders is to integrate linked markers 
for QTL into the breeding program, in so called marker assisted selection schemes (MAS). The 
statistical model for using marker information in BLUP (best linear unbiased prediction) 
genetic evaluations (MA-BLUP) was developed by Fernando and Grossman (1989). MA-
BLUP methodology allows to estimate QTL- and polygenic effects simultaneously. 

Practical implementations of MA-BLUP in dairy cattle are most often based on approaches 
where only the genotyped animals and their close relatives are used in MAS schemes. Animals 
genotyped are usually proven bulls, bull dams and selection candidates for progeny testing. A 
best case scenario for MA-BLUP evaluations would be that in addition to selection candidates 
several generations of ancestors are genotyped. But in reality in many cases one will encounter 
only sparse genotyping of ancestors of selection candidates, because genotyping increases costs 
and DNA-samples are not available. These observations were made for real data during the 
implementation of MA-BLUP for Simmental cattle in Germany and Austria. At the same time 
the questions came up, how strongly MA-BLUP is affected by missing genotypes, and whether 
a large pedigree with incomplete data should be preferred over a short pedigree with complete 
genotyping. The aim of our study is to examine these questions with respect to bias and 
standard error of estimated variance components and accuracies of MA-BLUP breeding values 
by means of simulation. 

 

Material and Methods 

A stochastic simulation model was used to generate the data. Each simulation cycle consists of 
two phases: data generation and analysis of simulated data sets. 

Data Generation 

In the simulation, data was generated for a conventional dairy cattle breeding scheme. The 
general procedure is described by Neuner et al. (2008). In contrast to Neuner et al. (2008) the 
time horizon for data generation was 34 years in the current study. A single trait model for 305-
day milk yield with a heritability of 0.36 and an additive genetic variance of 260,100 kg² was 
chosen. Genetic parameters were in agreement with the actual first lactation parameters of 
German Simmental cattle (Interbull, 2007). The overall breeding value of each animal was the 
sum of a ‘residual polygenic breeding value’ and a ‘QTL breeding value’. A single biallelic 
QTL with an allele frequency of 0.5 was assumed and the QTL was bracketed by two marker 
loci located 3 cM and 2 cM apart, each with 10 alleles but different allelic distributions. Allele 
frequencies for the marker 3 cM apart from the QTL were 40, 19, 15, 12, 7, 2, 2, 1, 1 and 1% 
(polymorphic information content, PIC = 0.732), and 60, 20, 8, 4, 2, 2, 1, 1, 1 and 1% (PIC = 



 

 

0.555) for the marker 2 cM apart, respectively. All calculations assumed a QTL accounting for 
20% of the overall additive genetic variance of the trait investigated. 

Analysis of simulated data sets 

In routine genetic evaluations of dairy cattle all pedigreed animals are included. However, 
when applying MAS, only a small fraction of animals might be genotyped at genetic markers. 
As only genotyped animals provide information for the estimation of QTL variance 
components and breeding values in MA-BLUP models, the ‘two-step approach’ as described 
by Liu et al. (2004), Druet et al. (2006) and Neuner et al. (2008) was used in this study. 
Phenotypic observations in MA-BLUP were daughter yield deviations (DYD, VanRaden and 
Wiggans, 1991) of bulls together with yield deviations (YD, VanRaden and Wiggans, 1991) of 
cows derived in routine genetic evaluations for the entire population. The different amount of 
information available for the calculation of DYD was accounted for by applying the weighting 
factors EDC (effective daughter contributions, Fikse and Banos (2001)) and � (Neuner et al., 
2008) to twice the DYD. YD were not weighted, because each cow had only one record in the 
current study. Genetic parameters for MA-BLUP models and MA-BLUP EBV were estimated 
with the ASREML package (Gilmour et al., 1995) using the MA-BLUP model of Fernando 
and Grossman (1989). The QTL effect is accounted for in the genetic model as an extra 
random effect with covariance structure proportional to the IBD (identity by descent) matrix at 
the QTL position given the linked markers. 

Two different pedigrees were derived for MA-BLUP. The difference between them was the 
depth of the pedigree. The short pedigree was spanning over 3 generations and contained 1,821 
animals, whereas the deep pedigree was over 4 generations with 2,671 animals. In each of the 
pedigrees all animals in the youngest generation had no phenotypic information. 

In total four IBD matrices were calculated for each simulated data set. For each pedigree size 
one IBD was calculated for the situation of complete genotyping. To analyze the effect of 
missing genotypes another two matrices were generated in order to reflect two different 
genotyping structures in the deep pedigree: moderate and extensive gaps. We generated the  
missing genotypes in order to mimic practical conditions, i.e. old animals at the top of the 
pedigree are more often not genotyped than animals at the bottom of the pedigree, and missing 
genotypes occur more often for females than for males. In total, the proportion of missing 
genotypes is about 41% for moderate and 61% for extensive gaps. All IBD matrices applied for 
MA-BLUP evaluations were calculated using the package LOKI (Heath, 1997). 

Parameters studied 

Parameters considered for the estimation of variance components were the bias of estimated 
variance components and their asymptotic standard errors. The deviation of estimates from the 
simulated parameters was used to check for bias due to the pedigree depth and/or missing 
genotypes. Standard errors of the estimates were used to assess the precision of estimates 
between different models. In order to assess the fit of the genetic model the likelihood ratio test 
was calculated as described by George et al. (2000). To examine the impact of the investigated 
factors on the estimation of MA-BLUP breeding values, the correlation between true and 
estimated breeding value was calculated for young bull candidates. 

 

Results 

Variance Component Estimation 

Findings for the estimation of variance components are summarized in table 1. The values of 
the estimated parameters are nearly the same whether the short or deep pedigree is applied, and 



 

 

whether genotypes are missing or not. Bias of variance components could not be observed for 
any of the applied models.  

Table 1: Simulated and estimated parameters for the estimation of variance components. Parameters 
shown are the additive genetic variance ( 2ˆ aσ ), the residual variance ( 2ˆ eσ ), the genetic variance 

explained by one QTL ( 2ˆ qtlσ ), the log likelihood ratio (log LR), the ratio of 2ˆ aσ  and 2ˆ qtlσ , and the 

estimated standard errors for the estimated variance components ( ..es ). The values are averages over 
100 replicates. 

Pedigree 
depth 

Missing 
genotypes 

2ˆ aσ  2ˆ eσ  2ˆ qtlσ  LRlog  2

2

ˆ
ˆ

a

qtl

σ
σ

 ( )2ˆ.. aes σ  ( )2ˆ.. ees σ  ( )2ˆ.. qtles σ  

short none 259,493 459,265 52,924 2.539 0.204 20,033 31,899 31,892 
deep none 260,677 458,426 50,293 7.284 0.193 16,100 25,221 19,392 
deep moderate 260,738 458,418 50,462 6.400 0.194 16,109 25,246 20,996 
deep extensive  260,899 458,271 51,020 5.373 0.196 16,133 25,284 23,333 
Simulated parameters 260,100 462,400 52,020  0.200    
 
The standard errors of estimated variance components were used to asses the precision of the 
estimates. From lines 1 and 2 in table 1 follows, that increasing the pedigree depth leads to 
more accurate estimates. In contrast, standard errors increase for missing genotypes, especially 
for the genetic variance explained by the QTL. The observed LRT values indicate the same as 
the standard errors: The best fit was observed for the model with the deep pedigree and no 
missing genotypes. 

Accuracy of MA-BLUP EBV 

To evaluate the consequences of the different conditions on the estimation of MA-BLUP 
breeding values, accuracies were calculated for young bull candidates. Correlations between 
simulated and estimated breeding values were assessed for the overall MA-BLUP breeding 
value, the residual polygenic breeding value, and the breeding value at the QTL. 

Table 2: Accuracies of estimated breeding values in MA-BLUP evaluation models. Accuracies are 
shown for the overall breeding values of MA-BLUP evaluations, the residual polygenic breeding value 
and breeding value for the QTL position (QTL-EBV). In breeding value estimation, the estimated 
variance components were used. The results are averages over 100 replicates per scenario. 

Pedigree 
depth 

Missing 
genotypes 

Young bull candidates 
MA-BLUP Residual polygenic QTL-EBV 

short none 0.556 0.497 0.348 
deep none 0.566 0.501 0.437 
deep moderate 0.563 0.501 0.418 
deep extensive 0.560 0.500 0.390 

 
Average MA-BLUP accuracies were hardly affected by the model, pedigree depth or missing 
genotypes. The increase in pedigree depth caused a slight improvement of accuracy for young 
bulls, because the gametic effects could be estimated more accurately. However, this slight 
increase got gradually lost as the amount of missing genotypes increased. From table 2 follows, 
that mainly QTL-EBV are affected by changes in the data structure. 

 

 

 



 

 

 

Discussion 
Pedigree depth 

The advantage of a more extensive pedigree of genotyped animals for MA-BLUP is obvious. 
Similar to the effect of having more offspring for progeny tested bulls, a deeper pedigree 
implies more phenotypic and genotypic data and more informative matings for the estimation 
of QTL effects. As a consequence deeper pedigrees improve the estimation of genetic and 
residual variances compared to shorter pedigrees. 

The effect of a more parsimonious pedigree was also shown by George et al. (2000). They 
altered the number of offspring per mating from 1.8 to 14.3 offspring per mating. As a 
consequence, there were more progeny per parent providing information to estimate genetic 
parameters and MA-BLUP EBV. Even if the approach of George et. al [8] was different from 
the one in our study, the effect of a larger pedigree was the same as in our approach: more 
accurate estimates and increased power.  

Missing genotypes 

If marker information was complete and could be used to infer the transmission of QTL alleles, 
the IBD matrix would only contain 1s and 0s. At the other extreme, if there was no marker 
information, the IBD matrix would become identical to the numerator relationship matrix. 
Several approaches exist to deal with the problem that non-genotyped animals do not 
contribute information for QTL models (George et al., 2000). A well-known approach is the 
multiple-site segregation sampler LOKI (Heath, 1997) that was used in this study. We found 
that missing genotypes did not lead to biased variance components. Moreover, for a combined 
analysis of pedigree depth and missing genotypes our results show that using a deep pedigree 
with many gaps is preferable over a short but complete pedigree. In contrast to our results, 
George et. al (2000) reported that the QTL variance was overestimated, residual polygenic 
variance was underestimated and bias increased the more genotypes were missing. The main 
reason for these disagreeing results could be that the structure of pedigree and missing data in 
our study allowed a much better reconstruction of missing genotypes by LOKI. In the pedigree 
of George et al. (2000) the number of progeny and grand progeny was less than for the cattle 
breeding program in this research. Thus, fewer descendants are available to contribute 
information for the reconstruction of their ancestors’ genotypes. Furthermore, the amount of 
phenotypic information per sire is very much different in both studies. Compared to George et 
al. (2000) both the better ability to reconstruct missing genotypes and the higher amount of 
phenotypic information for MA-BLUP result in unbiased estimates in our study. 

Effects on accuracy of MA-BLUP 

Our results show that the overall accuracy of MA-BLUP breeding values is hardly affected by 
neither the pedigree depth nor missing genotypes. With respect to accuracy of EBV in MA-
BLUP models, the benefit of increased pedigree and marker information was investigated by 
Villanueva et. al (2002). They simulated four additional generations of random selection for 
extending their data set. The increased amount of marker genotype information significantly 
increased the accuracy of the estimation of the QTL effects from 0.54 to 0.65. Parameters for 
their study were 0.25 for the heritability and 0.24 for the ratio of genetic variance explained by 
the QTL. Spelman (1998) also concluded that more animals genotyped in each generation and 
more generations of genotypic information for MAS will result in an increase in accuracy of 
the estimation of QTL effects and therefore in MAS superiority. 

 



 

 

Conclusions 

To estimate variance components and breeding values in MA-BLUP models deep pedigrees 
have to be preferred over short pedigrees because they provide more phenotypic and genotypic 
information. As a consequence the estimation of all variance components is improved. 

Missing genotypes are always a loss of information and can reduce possible benefits. To 
minimize this problem programs that allow for genotype reconstruction should be applied. But 
it has to be noted that genotype reconstruction requires a good data structure. 

The main conclusion of this study is that deep pedigrees with incomplete genotyping perform 
better than short pedigrees with complete genotyping. 
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