

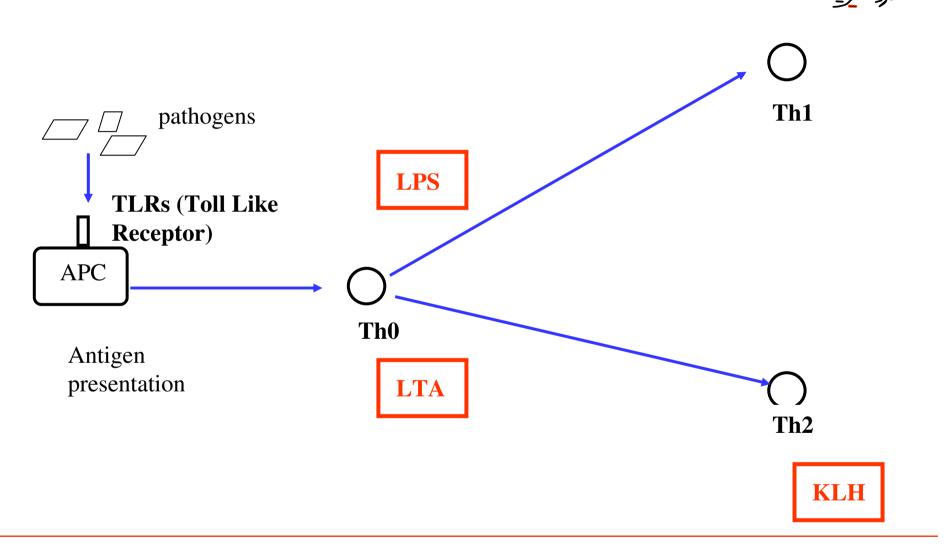
Genetic parameters for immune responses

specific and innate
in polish rural chicken line and a commercial layer line
and their cross

Maria Siwek

University of Technology and Life Sciences, Bydgoszcz, POLAND

Introduction: Why immunity?


→ Incresing demand for chicken meat

→ Increase consumption of chicken products

- → Big farms, intense production
- → Pathogens threat in chicken production,
- → Risk for human health, close contact between humans and chickens

Solution: improved overall immunity of chickens

Relation between innate and adaptive immunity

Research questions:

→ Validate genetic basis for immune responses

→ Validate QTL for (specific) immune responses to KLH

→ Detect QTL for innate immune responses

Materials & Methods: chicken lines

- → Green-Legged
 Partridgelike (GP)
- * native polish layer
- * closed since 50 generations
- * high resistance to low temperatures and diseases

→White Leghorn (WL)

- * commercial layer
- * extensively selected for egg production ability
- * assumption: low resistance against temperatures and diseases

Materials & Methods: cross

F₀: GP

WL

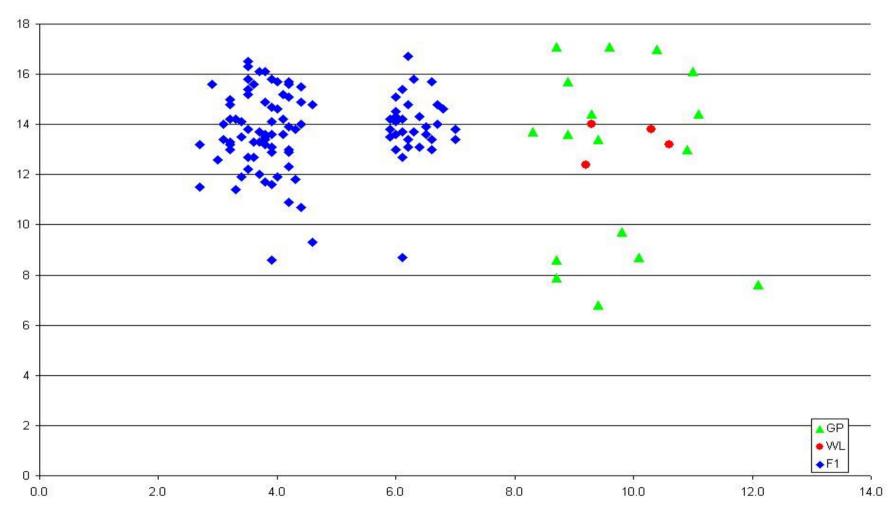
→ Birds challenged with KLH antigen

 F_1 : (GPxWL) x (GPxWL)

→ Parents selection based on response to KLH at day 7 (High /Low)

Materials & Methods: antigens

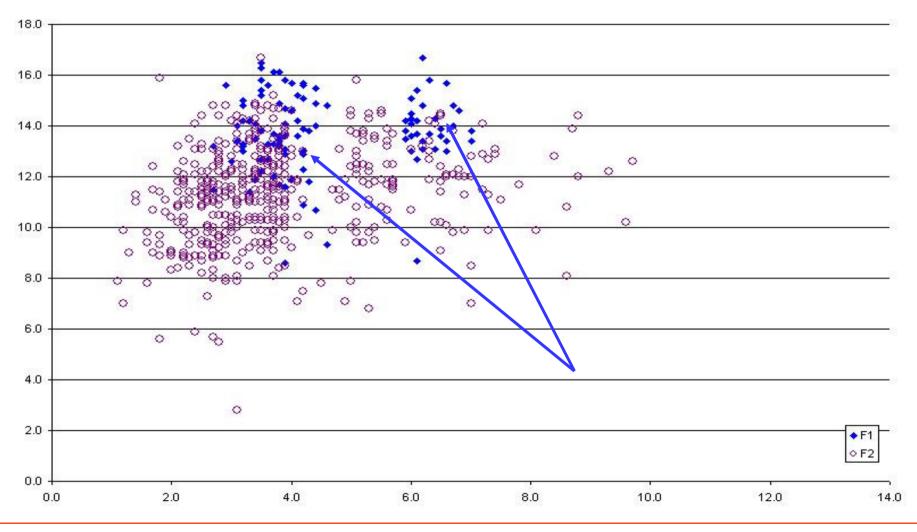
Immune responses were measured as:


→ specific immune response for a Keyhole Lympet Hemocyanin antigen (KLH)

non specific, innate immune responses for

- * Lipopolysaccharide (LPS)
- * Lipoteichoic acid (LTA)

Results: F0 and F1 generations: KLH responses



EAAP, Session 15, Abstract No. 3441

Results: F1 and F2 generations: KLH responses

EAAP, Session 15, Abstract No. 3441

Results: descriptives for KLH

Line / cross	KLHd0	KLHd7
WL	9.20 ± 1.58a	12.62 ± 1.75ab
GP	9.58 ± 1.21a	12.64 ± 3.64ab
F1	4.58 ± 1.48b	$13.55 \pm 2.35a$
F2	3.81 ± 1.55b	$11.37 \pm 1.92b$

a-b: Means in the same column and with no common letter differed significantly (P \leq 0.05).

Results: heritability and rg

Trait	LPS	LTA	KLHd0	KLHd7
LPS	0.10 (0.07)	0.713	NE	-0.59
LTA		0.23 (0.11)	NE	0.02
KLHd0			0.07 (0.07)	NE
KLHd7				0.11 (0.07)

Discussion

• There is no difference in KLHd7 responses in parental lines

• There is more variation for KLHd7 in GP line what might be supported with genetic background

• There is genetic background for immune traits measured but heritabilities are considered low

Discussion

negative heterosis between pure line and crosses for KLHd0 response

crossbreds are known for better disease resistance

negative heterosis for an immune trait is indeed advantageous

Future plans:

1. QTL study – validation of association between genetic markers and antibody level in rural (GP) x commercial chicken (WL) cross

2. Gene expression study – comparison of Toll-like receptors expression in rural (GP) & commercial chicken (WL) parental lines

Acknowledgement

Giulietta Minozzi
Anna Sławińska
Egbert F. Knol
Andrzej Witkowski
Marek Bednarczyk