Estimation of genetic variation in residual variance in female and male broiler chickens

Han Mulder, W.G. Hill, A. Vereijken, R. F. Veerkamp (herman.mulder@wur.nl)

Session 15, presentation 7, abstract no 3228 Animal Breeding & Genomics Centre

Introduction	Introduction
Existence	Relevance
 Analysis of large data sets Litter size in sheep (SanCristobal-Gaudy et al., 2001) Litter size in pigs (Sorensen and Waagepetersen, 2003) Body weight in spails (Ros et al. 2004) 	 Slaughterhouses penalize excessive variability Penalty when too many animals are outside preferred range
 Body weight in broilers (Rowe et al., 2006) Carcass weight in pigs (Ibanez-Escriche et al., 2008a) Body weight in mice (Ibanez-Escriche et al., 2008b) 	 To increase robustness against unknown environmental disturbances
 Analysis of laboratory species Bristle number in Drosophila (Mackay and Lyman, 2005) 	 Even though heritability of residual variance is low, large responses are possible (Mulder et al., 2007, 2008)
Animal Breeding & Animal Breeding & Genomics Centre	Animal Sciences Group Animal Breeding & Genomics Centre

Objective

- To estimate genetic variability in residual variance for body weight in broilers
- To estimate genetic correlation between mean body weight and residual variance
- To estimate genetic correlation between female and male residual variance

```
ANIMAL SCIENCES GROUP
```

Animal Breeding & Genomics Centre

Material and methods

Data

- Data set broilers: body weight at 6 weeks
 - At least 50 offspring of one sex per sire
 - Five animals per joint effect of hatch week of individual and its dam
 - 26,972 records females; 24,407 records males
 - 402 sire families for females; 369 sire families for males
 - 123,328 animals in pedigree file

ANIMAL SCIENCES GROUP

Animal Breeding & Genomics Centre

Result	S				
Heritabilities					
		Parameter			
Sex	Method	h_m^2	h_{ν}^2	GCV_E	
Females	Univariate	0.324 (0.026)	0.022 (0.002)	0.352	
	Bivariate	0.400 (0.024)	0.037 (0.003)	0.502	
Males	Univariate	0.248 (0.026)	0.012 (0.001)	0.215	
	Bivariate	0.320 (0.027)	0.032 (0.003)	0.404	
Animal Botendes group Animal Breeding & Genomics Centre					

Results Genetic correlation Genetic correlation between mean and residual variance • Females: -0.41 (se = 0.03) -0.45 (se = 0.04) Males: • What is the biological meaning of a negative genetic correlation between mean and residual variance? • Disease susceptibility? ANIMAL SCIENCES GROUP Animal Breeding & Genomics Centre

Results

Genetic correlation

- Genetic correlation between female and male residual variance
 - 0.11 (se = 0.09)
- Why are females and males so different in variability? • Heritabilities and variances are also different for both
 - sexes

ANIMAL SCIENCES GROUP

Animal Breeding & Genomics Centre

Discussion

- Current method can be used in standard software packages for REML and BLUP
- Selection response after one generation of selection in sib testing scheme: • Reduction of residual variance: 10-24%

ANIMAL SCIENCES GROUP

Animal Breeding & Genomics Centre

