Mapping of QTL for feed intake traits in a back-cross between Large White and Piétrain pig breeds

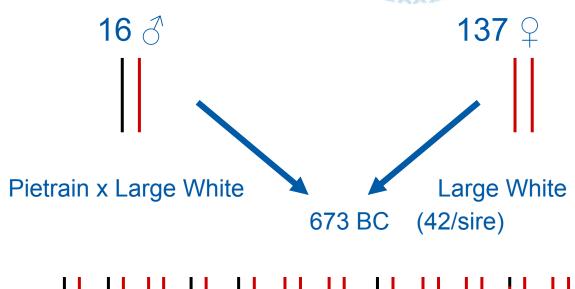
Hélène Gilbert¹

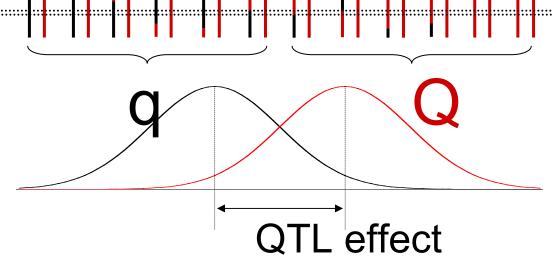
Juliette Riquet², Jospeh Gruand³, Yvon Billon³, Katia Fève², Pierre Sellier¹, Jean Noblet⁴, Jean-Pierre Bidanel¹

helene.gilbert@jouy.inra.fr

¹SGQA (Jouy en Josas), ²LGC (Toulouse), ³GEPA (Charentes), ⁴SENAH (Saint-Gilles)

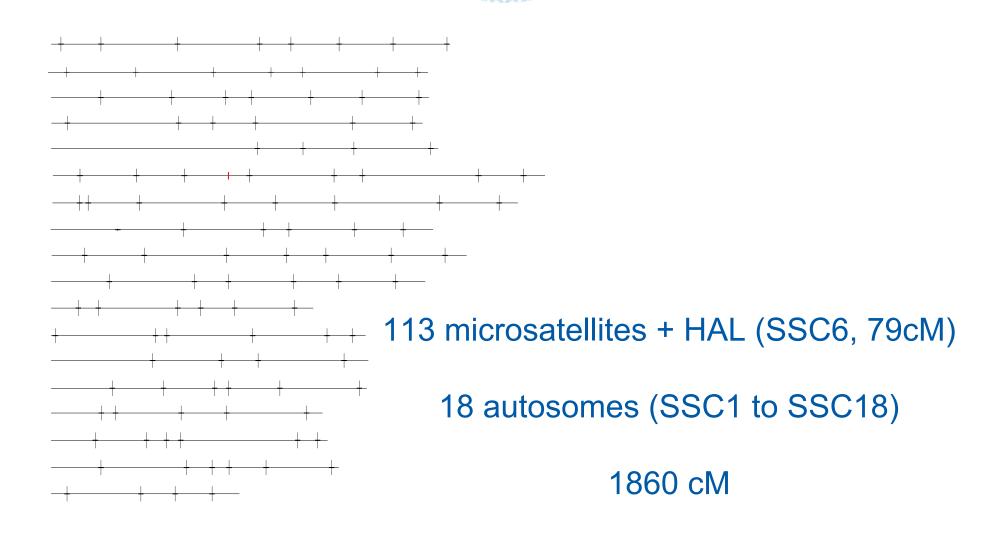
DIET AGRICULTURE ENVIRONMENT




Pietrain breeds show differences in voluntary feed intake (around 20 %) and, to a much lesser extent, in feed efficiency (Labroue et al. 1999)

mapping loci involved in feed intake and feed efficiency

BC population



(GEPA, ROUILLE)

Genetic map & genotyping

Traits

Growth, feed intake and feed efficiency (9 weeks of age to slaughter - 108kg on average)

Individual feed intake recorded (electronic feeders ACEMA 64)

- → Daily feed intake→ Total feed intakeFeed intake
- → Food conversion ratio FCR
- → Residual feed intake RFI

Feed efficiency

```
FCR = (Total feed intake) / (weight gain)
```

```
RFI = Daily feed intake - [ a * metabolic weight + b * average daily gain - c * lean meat content ]
```

Carcass composition, Meat quality

Fixed effects corrected (SAS, GLM)

Growth and feed intake: sex, contemporary group, group size

Carcass composition: sex, contemporary group, carcass weight

(covar)

Meat quality: sex, slaughter day

+ HAL genotype (NN / Nn) for 652 BC

QTL detection (QTLMAP, Le Roy et al 1998)

Interval mapping, likelihood ratio test, sire family analysis

Thresholds: simulations under H0

Results on feed intake, without HAL correction

SSC	TRAIT	p value	сМ	
2	Total Feed Intake	*	77	
6	Daily Feed Intake	*	72	← HAL
	Food Conversion Rate	**	105	
7	Daily Feed Intake	**	71	
	Food Conversion Rate	***	90	
9	Residual Feed Intake	*	104	
	Daily Feed Intake	*	104	
16	Residual Feed Intake	*	86	

*: 5% chromosome **: 1% chromosome ***: 5% genome

Carcass composition and meat quality: effect of HAL correction

		no com	no correction		correction	
SSC	TRAIT	LRT	cM	LRT	сМ	
6 Water Holding Capacity		***	74			
Meat Quality Index		***	75			
Ham weight		***	79			
Loin weight		***	51			
	Dressing percentage	***	54			
	Lean Meat Content	***	74			

only QTL with p<5% genome

→ HAL: no interaction with QTL detected on other chromosomes

Major conclusions

QTL for feed intake and feed efficiency = low significance, effects ~ $0.25\sigma_p$

- → SSC16 and SSC9 (Geldermann et al 2003)
- → SSC6 : HAL effect on daily feed intake

+ 1 QTL on food conversion ratio

No marked interactions with HAL

SABRE CUTTING EDGE GENOMICS FOR SUSTAINABLE ANIMAL BREEDING

Thank you

