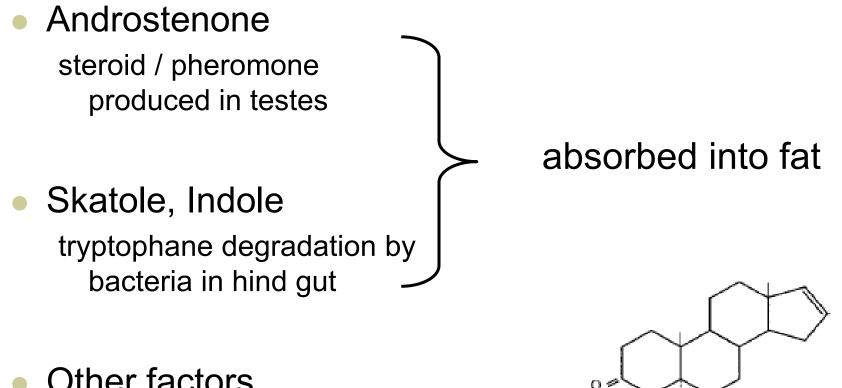


CUTTING EDGE GENOMICS FOR SUSTAINABLE ANIMAL BREEDING

An integrated genomics approach to unravel the genetic basis of boar taint

Barbara Harlizius, Alan Archibald, Christian Bendixen, Catherine Larzul, Joan Tibau



This publication represents the views of the Authors, not the EC. The EC is not liable for any use that may be made of the information.

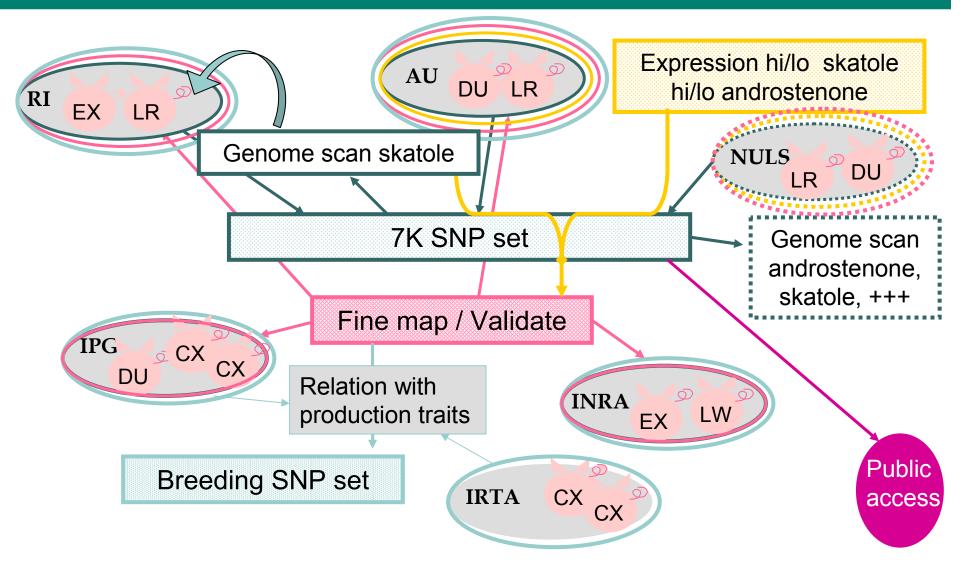
SABRE

The offending molecules

5a-androst-16-en-3-one

Н

Other factors


Goals and Tools of WP9

- Avoid boar taint by breeding
- Identify genetic mechanisms of accumulation of skatole and androstenone in fat
- Combine high-throughput expression analyses with QTL information

Objectives

- Confirm known QTL and identify new QTL
 - Establish porcine SNP panel $\sqrt{}$
 - Perform genome wide scan $\sqrt{}$
- Identify new candidate genes
 - Comparative gene expression: RNA & Protein $\sqrt{}$
 - Integrate mapping and comparative expression results
- Fine-map QTL regions (started)
 - Target causative genes
 - Identify predictive SNPs
- Confirmation studies (started)
 - Validate SNPs in commercial populations
 - relationship with other important production traits

The Partnership

7K SNP set designed for genome scan

Candidate SNPs

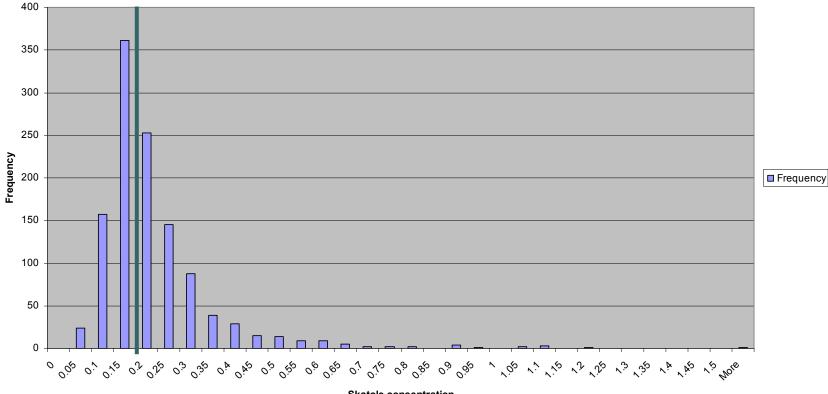
- 1,635 (23.2%) re-sequencing of BAC ends (RI/Sanger)
- 2,695 (38.3%) re-sequencing of cDNA (AU,NULS)
- 2,712 (38.5%) *in silico* mining EST data (AU)
- 7,042 submitted for design
- 6,523 Illumina iSelect / Infinium assays

Characterize 7K SNP set on 8 breeds

5.482 loci genotyped:728 loci monomorphic

→ 4.754 SNPs

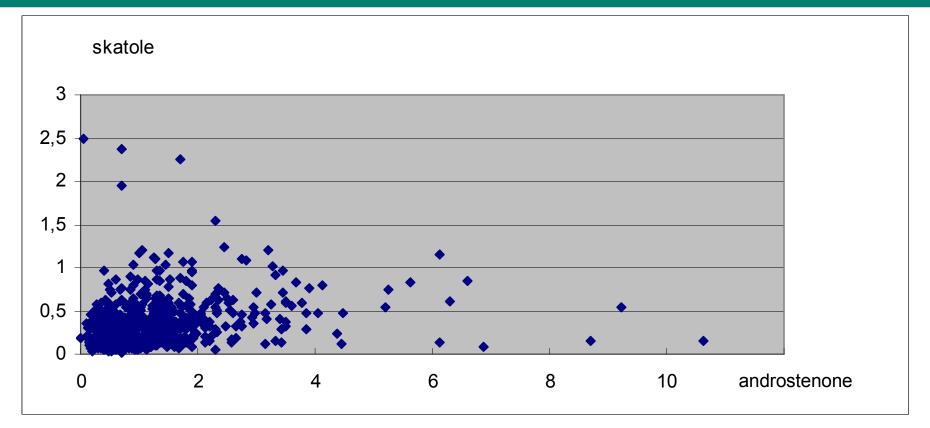
1 SNP / cM ≈ 1 MS / 5cM


 \rightarrow dense genome scan

	n	MAF >15%	
		-15%	
Landrace	30	2082	
Large White	24	2069	s
Duroc	23	2633	THE
Pietrain	51	2263	
Hampshire	50	1899	1400
D synthetic	24	2699	NY
E synthetic	24	2045	
Meishan	36	1609	
Mean		2163	A R

Genome scan for skatole in Landrace (RI)

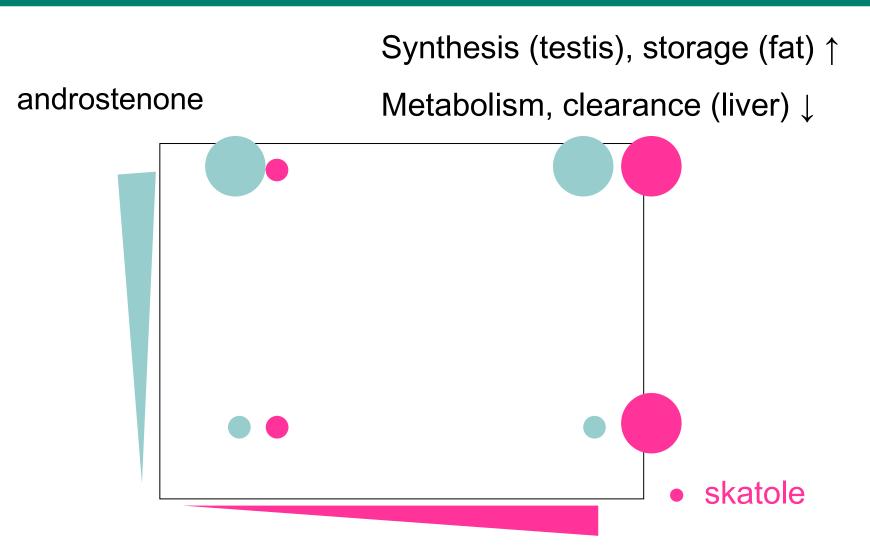
- Danish Landrace (Danske Slagterier in-line skatole testing)
- ~6,000 samples
 - full sib pairs: 500 high skatole / 500 low skatole
- Phenotypes: growth, fat, pedigree, androstenone
- Genotyping completed Apr 2008
- Statistical analysis in progress


Danish Landrace samples for genome scan (RI)

Danish skatole distribution

Skatole concentration

Skatole vs. Androstenone: r = 0.27


 h^2 And = 0.56 h^2 Skat = 0.35

Duroc synthetic line sampled (IPG)

Breed differences for genetic back ground of boar taint compounds ?

Possible reasons for increase in boar taint compounds

Analyse gene expression (AU)

 27K cDNA porcine microarray on high/low androstenone
60 Durse and 60 Londress (ALL NULLS)

60 Duroc and 60 Landrace (AU, NULS) testis / liver (Moe et al. 2007, Moe et al. 2008)

20K 70-mer oligo-array on high/low skatole
60 Landrace + 60 Duroc/Yorkshire (AU, NULS)
liver

Compare with protein expression (AU)

- Genes identified:
- Involved in androstenone biosynthesis (CYP17, CYB5, FTL ...)
- Involved in skatole metabolism, known genes (e.g. CYP2E, CYP2A) but many new genes strongly upregulated in highskatole animals
- Breed differences in expression profiles
- iTraq based proteomics: liver samples (40 LR high/low skatole)
- good overlap to oligo-array study
- large number of new differentially expressed proteins

Start fine mapping (INRA)

 Fine mapping of SSC7 QTL in Large White x Meishan backcross families

Previous QTL analysis \rightarrow **QTL androstenone on SSC7**

Construction of BC₄ animals

Fine mapping of this Androstenone QTL (A: LW a:MS)

Characterization of a region of 137 genes

Characterization (in silico) of all transcripts of each gene

137 genes in this region - 25 pseudogenes

- 26 genes without ESTs

86 genes with their transcripts

Development of PCR specific for each transcript for 13 testis-genes testes/fat/liver

Confirmation of variation by qRT-PCR

Success with gene 73

- Meishan allele reduces androstenone
- 3 different transcripts indentified
- Increased transcription from Meishan allele
- Potential causal mutation in the promoter region under investigation

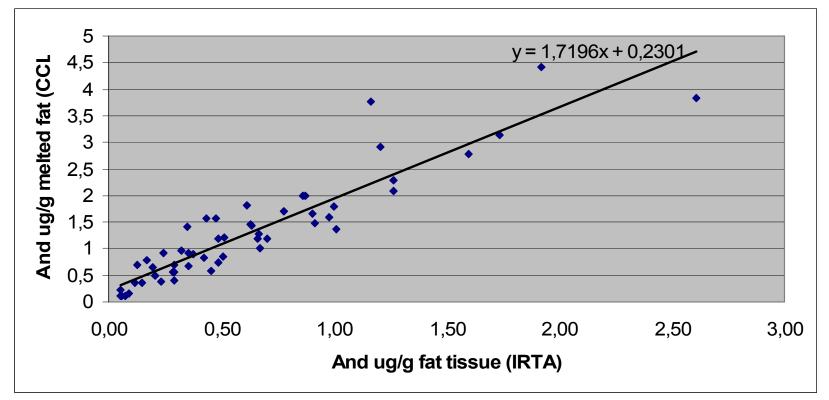
Sample collection for confirmation studies

• Collect samples from other breeds and measure boar taint :

Partner	Breed / cross	Boars
INRA	Large White	455
IPG	D line (Duroc based)	2000
	commercial crosses	400
IRTA	Commercial crosses	256
AU	Landrace, Duroc	1200
Total		4322

 and production traits: growth, feed efficiency, fertility, behaviour, carcass composition

Comparison of androstenone methods


• 53 fat samples from 1 slaughter day:

Ship on dry ice to	method	sensitivity
NSVS	Fluoro-IA	0,05 µg/g
IRTA	GC-MS	0,1 µg/g
CCL	GC-MS	0,2 µg/g

correlations are high: 0.91–0.82

... but levels differ

Pure melted fat vs total fat tissue

Relevant for comparison between studies and determination of consumer acceptance thresholds!

Do I really smell that bad??

