EAAP Meeting, Vilnius - August, 2008

Farm management factors influencing bulk milk somatic cell count in Irish dairy herds

B. O'Brien¹, P.T. Kelly^{1,2}, D.P. Berry¹, E.O'Callaghan¹, W.J. Meaney¹, K. O'Sullivan³ & S. More²

¹Moorepark Dairy Production Research Centre, Fermoy, Co. Cork, Ireland; ²School of Agriculture, Food Science & Veterinary Medicine, University College, Dublin, Ireland; ³School of Mathematical Science, University College Cork, Ireland

> Session 11 Bernadette.obrien@teagasc.ie

Current question

How to manage the enterprise for both milk quality and profitability

Temporal trends of bulk milk SCC data from Irish dairy farms over 10 year period

- 9,113 herds in 3 Co-op areas
- 2.75M records 1994 to 2004
- Decrease in geometric mean SCC between 1994 and 2000
- SCC increased gradually between 2000 and 2004 (~5x10³/ml per year)
- SCC for 2001-2004 greater (p<0.01) than those for 2000

Context

- Objective: to produce milk of low SCC
 - Ultimate target: <150x10³ SCC/ml
- SCC complex
 - Time to manifest itself
 - Intensity of problem can be influenced by baseline SCC cause+effect
- Why: High SCC problem for production and processing
- Producer:
 - reduced milk yield, reduced milk price, application of penalties, cost of treatment, labour demand
- Processor:
 - Altered milk composition and functional properties, UHT milk, cultured dairy products, Cheese yield efficiency (KPI) (< 100x10³ cells/ml) (Barbano *et al.*, JDS, 1991; Politis *et al.*, JDS, 1988)
- Aim: Determine the on-farm factors influencing SCC on farms by survey and create awareness
 - *Other reports Irish scenario seasonal production

Methodology – data + survey

Target

- Obtain milk supply datavolume and SCC data for ~ 400 herds
- Conduct 2 questionnaire surveys on those herds
- To relate the management practises on-farm to SCC data by statistical analysis

<u>Tasks</u>

- Milk volume records of ~4000 suppliers to 1 milk processor were obtained
- A representative random sample based on annual milk supply volume was selected = 398 farms
- **BT SCC data obtained**
- Questionnaire milking process (70 Q) – Apr-Jul
- Questionnaire winter housing management (50 Q) Dec-Mar

Methodology – data analysis

- Natural log of all test day SCC data all collections – 365 d was calculated
- SCS (av. nat log SCC)
- Series of analysis each separate, individual, variable was tested against SCS
- Each variable significant at P<0.05 was deemed to affect SCS
- Multiple regression model developed using PROC GLM (adjusted for confounding effects)

Farm Description

398 Farms				
Av. Herd size :	50) cows	(12-293)	
Av. Milk volume:	21	18 x10 ³ L	. (17 -1,324)	
Av. Bulk tank SCC: 283x10 ³ /ml (82-773)				
% herds milked while cows indoors				
	Spring	_	66	
	Autumn	_	67	
Most prevalent bacteria type found in the bulk tank was staph. aureus				

Milking Facilities

Preparation for milking – all year

•	Foremilk + wash + dry	1 %
•	Foremilk + wash	8 %
•	Foremilk + dry wipe	7 %
•	Foremilk	13 %
•	Wash + dry	<1 %
•	Wash	3 %
•	Dry wipe	7 %
•	No preparation	17 %

Cow preparation in Spring (Jan – April)

Practise	(P = NS)	% herds	SCC (x10 ³ /ml)
Wash		22	258
Wash & dry with p	oaper	5	251
Wash & dry with c cloth	ommon	3	<u>242</u>
Dry wipe		24	246
No preparation		46	<u>260</u>
Difference (max –	min)		<u>18</u>

Cow preparation in Summer (May – Sept)

Practise SCC (x10³/ml) % herds (P=NS) Wash 16 <u>269</u> Wash & dry with paper 2 <u>213</u> Wash & dry with common 2 256 cloth Dry wipe 26 250 **No preparation 54** 259 **Difference (max – min)** <u>56</u>

Cow preparation in Winter (Oct – Dec)

Practise	(P= NS)	% herds	SCC (x10 ³ /ml)
Wash		22	<u>391</u>
Wash & dry with paper		7	345
Wash & dry with comm	on cloth	4	370
Dry wipe		22	<u>341</u>
No preparation		45	364
Difference (max – min)			<u>50</u>

Practice	% herds	SCC (x10 ³ /ml)		
Teat disinfection post-milking (P<0.05)				
Always	69	267		
Intermittent	9	281		
Never	22	298		
Dry cow therapy (P<0.05)				
Yes	96	273		
Νο	4	342		
Milk recording (P<0.01)				
Yes	49	259		
Νο	51	292		

Hygiene Status

Herd Factor	% herds	SCC (x10 ³ /ml)		
Milking Parlour		(P<0.01)		
Clean	43	255		
Dirty	9	297		
Cluster		(P<0.001)		
Clean	42	256		
Dirty	13	317		
Liners		(P<0.05)		
Good	81	264		
Worn	7	324		
Roadway		(P<0.05)		
Clean	25	269		
Dirty	24	311		

Winter Housing

Cows in Cubicles : 81% Cubicle: cow ratio ≥ 1 → 57% In – calf heifers in cubicles: 68%

Winter management in cubicle housing

Herd factor	% herds	SCC (x10 ³ /ml)		
Bedding (P<0.001)				
Lime on mats	34	242		
Mats only	20	271		
Lime on concrete floor	17	301		
Concrete floor	11	301		
Sawdust on mats	4	231		
Passageway cleaning (P<0.001)				
Automatic scraper	55	257		
Tractor & scraper	23	294		
Frequency of passageway cleaning (P<0.001)				
Once a day	24	301		
Twice a day	12	258		
4h intervals	18	244		
Cubicle stand Cleaning (P<0.01)				
Once a day	46	265		
Twice a day	37	250		

Hygiene Status

Herd Factor	% herds	SCC (x10 ³ /ml)
Cubicle House		(P<0.001)
Clean	43	256
Dirty	14	310
Cubicle Stands		(P<0.001)
Clean	56	249
Dirty	9	315
Clean cow Udder	34	262
Clean cow legs	30	258
Clean cow Tails	59	259

Summary of factors having a statistically significant effect on milk SCC

Milk volume

- Post-milking teat disinfection
- Dry cow therapy
- Milk recorded herds
- Hot water in parlour

- Frequency of winter house cleaning
- Cubicle bedding
- Hygiene of milking & housing facilities

(Parlour,cluster, shed passageway, cubicles & roadway)

Effect of selected milking practises on milk SCC

Effect of selected practises on milk SCC

Combined model for SCC

Discussion 1

- Herd selection procedure different to other studies
- Milk volume dilution
- Milk recording knowledge about cow and attention to detail
- Teat disinfection 22% not complying advice, results, correct application
- Liners why liners not changed >1/year on 36% farms
- Roadway particularly first 100m
- Heated water
- High SCC associated with dirty parlour and cluster (also Barkema *et al.*, JDS, 1998)
- Dirty cows udders and lower rear legs had higher prevalence of subclinical mastitis (Reneau *et al.*, NMC, 2003)
- Contamination of the cluster with staph indication of potential mastitis
- Hygiene scores of udders preformed as quality control measure

Discussion 2

- SCC increased in Winter –dilution or dirtier conditions
- More manure in stalls and less frequent cleaning associated with high SCC levels (Shukken *et al*, 1991)
- Current study hygiene of cow/bedding manure handling, type of bedding and maintenance of cow beds all significant
- Sawdust and lime on mats very good
- Automatic scraper effectiveness

Discussion 3

• Fundamental issue re Mastitis : exposure to pathogens or bacteria in the environment and transmission from cow to cow

Control: •Decease level in the environment •Decrease level of transmission As a manager Monitor: •Animal •Facility •Operation / sequence of duties

Conclusions

- Agreement with other studies no specific issues for Ireland
- Production of quality milk is a management issue NOT a technical issue
- Attention to detail hygiene status of the farm environment bacteria transmission
- Perceive as a PROCESS
 - Critically examine overall operation
 - Examine every point along the process
 - Systematic approach

Go raibh maith agat

