EAAP 2008, Session 10

Genetic evaluation for days-open in Danish Holstein using different models

Guosheng Su, Yali Hou, Per Madsen, Mogens S. Lund

University of Aarhus, Faculty of Agricultural Sciences, Denmark

Guosheng.su@agrsci.dk

AARHUS UNIVERSITET

Challenge for statistical model

Censored records

Non-Normal distribution

Objective:

Evaluate models for genetic evaluation of days-open (**DO**).

AARHUS UNIVERSITET

Data:

Lactation: First lactation.

Period: 1995 to 2004.

Herd: Having records in all the 10 years

Herd-year: Minimum 5 records

Sire: Minimum 5 records

In total: 476,000 records

AARHUS UNIVERSITET

Definition of censored records:

Unknown date of conception: **DO** is calculated as days from calv. to last insem., censored

DO> 365: replaced with 365, censored

16.6% censored records

AARHUS UNIVERSITET

Statistical models (5 alternative models)

- 1. Conventional linear model (LM): Add 21 d to censored records
- **2. Threshold-linear model (TLM):** A threshold model for censoring status (0=CS, 1=UNCS) and a linear model for **DO**.
- 3. Right censored linear Gaussian model (CLM)
- **4. Weibull proportional hazard model (SMW):** Ducrocq and Casella, 1996
- **5. Cox proportional hazard model (SMC)**: Piecewise constant baseline hazard function with constant length of 21 d

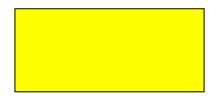
AARHUS UNIVERSITET

Statistical models (5 alternative models)

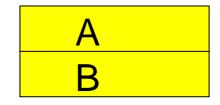
Basic model

- Y = Year_month
 - + Herd_year
 - + Age_group
 - + b_b.Breed_prop
 - + b_h.Heterozygosity
 - + Sire

+ residual



AARHUS UNIVERSITET


Model validation

Datasets for model validation

The whole data:

Subset A and B:

(divided by herd)

AARHUS UNIVERSITET

Validation criteria

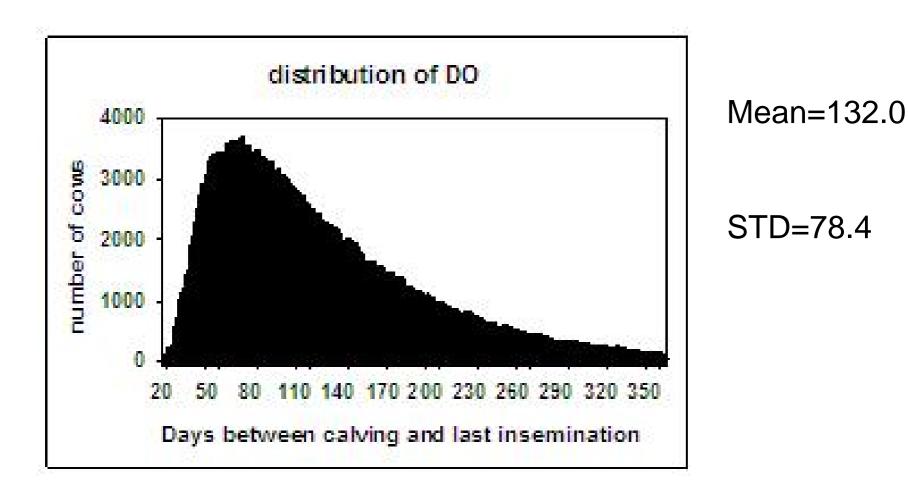
1. Cor(EBV_A, EBV_B): Test model stability

2. X² based on cross validation: Test predictive ability

AARHUS UNIVERSITET

Procedure of cross validation

- 1). **DO** → 5 intervals (<66, 67-95, 96-130,131-188, >188)
- 2). Calculate daughters frequency in each interval for each sire
- 3). Estimate daughters probability of conception in each interval, using logistic regression on EBV, based on dataset A
- 4). Predict daughters frequency in dataset B, using the probability from dataset A


5) Calculate X² statistic

$$x^{2} = \sum_{i=1}^{N} \sum_{j=1}^{5} \frac{(E_{ij} - O_{ij})^{2}}{E_{ij}}$$

AARHUS UNIVERSITET

Results

AARHUS UNIVERSITET

Table 1. Spearman rank correlation between EBV from different models (EBV $_{\rm time}$ in LM, TLM and CLM, EBV $_{\rm hazard}$ in SMW and SMC)

Model	TLM	CLM	SMW	SMC
LM	0.997	0.983	-0.906	-0.826
TLM		0.970	-0.891	-0.817
CLM			-0.930	-0.826
SMW				0.661

Different models could result in different ranking

AARHUS UNIVERSITET

Table 2. Spearman rank correlation betweenEBV from subset A and subset B

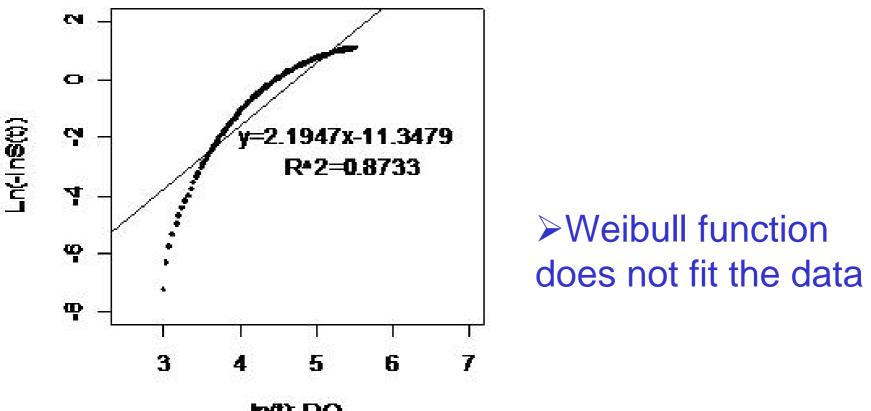
Dataset	LM	TLM	CLM	SMW	SMC
A - B	0.620	0.624	0.594	0.384	0.841

SMC is the best in stability

AARHUS UNIVERSITET

Table 3. x² statistics for the sires with at least 20 daughters, calculated from the expected and observed frequency of daughters getting conception in five intervals

Cross validation	LM	TLM	CLM	SMW	SMC
$A \rightarrow B$	5920	5876	6055	6407	5750
$B \rightarrow A$	6109	6091	6135	6478	5885


SMC shows best prediction ability

[We have found a mistake in analysis of X² statistic after EAAP, the figures in this table is waiting to be verified !!!]

AARHUS UNIVERSITET

Why did Weibull model (SMW) not perform well?

in(t): DO

Figure 2. Plot of $\ln[-\ln S(t)]$ against $\ln(t)$. S(t) = Kaplan-Meier estimates of the survival function at time t

AARHUS UNIVERSITET

1. Genetic evaluation of **DO** using different models could result in different ranking of candidates

2. Cox proportional Hazard model (SMC) is a good alternative to genetic evaluation of **DO**.

AARHUS UNIVERSITET