

Marker-based estimation of effective population size from one-generation population samples

H. Simianer¹, M. Hansen¹ and S. Weigend²

 ¹ Institute of Animal Breeding and Genetics, Georg-August-University Göttingen, Germany
² Institute of Farm Animal Genetics Friedrich-Loeffler-Institute, Mariensee, Germany

The effective population size N_e of a population P is defined as the size of a hypothetical ideal population which has the same increase in inbreeding as the existing true population P

N_e is a parameter of central importance in many areas of population genetics and breeding, but is ,notoriously difficult to estimate' (Frankham, 1995)

Approaches to estimate N_e

Approaches to estimate N_e

Expected CSH as function of effective population size and number of generations with a segment length x = 0,05 M (Flury et al., 2006)

Sonon Automotion States

The equilibrium value of CSH in a closed population is a function of segment length x (in Morgan) and effective population size

$$CSH_{\infty} = \frac{e^{-2x}}{e^{-2x} + 2N_e(1 - e^{-2x})}$$

With known segment length we can estimate the effective population size from the observed CSH, assuming the equilibrium state is reached

$$N_{e} = \frac{e^{-2x} (1 - CSH_{\infty})}{2(1 - e^{-2x})CSH_{\infty}}$$

Chicken populations studied

Lohmann Tierzucht GmbH 2 commercial lines LSL-A () , LB-A Institute of Farm Animal Genetics 3 experimental lines L68 •, R11 & R22 ()

- per line 10 roosters and 30 mother-daugther pairs
- compete pedigrees over 11 generations
- DNA samples from generation 2006/07

Methods

- 509 animals from all lines inclusive pedigree information (11 generations)
- Pedigree-based estimation of △F → N_e with the method of Woolliams (2007)
- Genotyping of 6 segments with 4-6 (S30) microsatellites (15'270 single data points)
- Haplotype reconstruction with PedPhase (Li & Jiang, 2003)
- Calculation of observed CSH, correction for CSH expected under Hardy-Weinberg and linkage equilibrium
- Marker-based estimation of N_e from corrected CSH value with the method of Simianer et al. (2007)

Pedigree-based N_e for chicken lines

LSL-A ()

Comparison of pedigree- and marker-based estimators of N_e

Comparison of pedigree- and marker-based estimators of N_e

Simulation:

- → 50 generations random mating, 3: = 1:1
- \rightarrow reference scenario: 100 animals per generation

→ bottleneck scenario: 10 animals per generation in generation 10 - 19

Pedigree-based estimates of Ne: ~ 100 (with 10 or 50 generations, w/w'out bottleneck)

Summary

- Pedigree-based and marker-based approaches yield different results
- Marker-based estimates of N_e are consistently smaller than pedigree-based estimates, especially so in (commercial) white layer lines
- Obviously much more homozygosity occurred on the molecular level than expected from the available (11 generation) pedigree
- Marker-based methods may be affected by historic events (e.g. population bottlenecks) and appear to produce systematically different results in defined scenarios

How much genetic information is needed to detect differences in $\rm N_{\rm e}$

Reference population with N_e = 30; 90 % power on the α = 0.05 level

Difference in <i>SE(CSH)</i>		Difference in CSH	lower critical N _e	upper critical N _e	Required information units
	± 0,25	± 0.00645	26.9	33.9	336
	± 0,50	± 0.01290	24.3	38.8	84
	±0,75	± 0.01935	22.2	45.3	37
	± 1,00	± 0.02580	20.4	54.3	21
				2517 2617	

1 information unit: 6 segments with on average 5 microsatellites

1 microsatellite ~ 3 SNPs → 84 information units = 7560 SNPs needed

High density SNP genotyping will soon provide a sufficient basis for marker-based estimation of $\rm N_{\rm e}$

Deutsche Forschungsgemeinschaft DFG

We would like to thank the German Research Foundation (DFG) for funding the project and Lohmann Tierzucht GmbH for providing samples and pedigree data

Session 8 email: hsimian@gwdg.de

Marker-based estimation of effective population size from one-generation population samples

H. Simianer¹, M. Hansen¹ and S. Weigend²

 ¹ Institute of Animal Breeding and Genetics, Georg-August-University Göttingen, Germany
² Institute of Farm Animal Genetics Friedrich-Loeffler-Institute, Mariensee, Germany

The effective population size N_e of a population P is defined as the size of a hypothetical ideal population which has the same increase in inbreeding as the existing true population P

N_e is a parameter of central importance in many areas of population genetics and breeding, but is ,notoriously difficult to estimate' (Frankham, 1995)

Approaches to estimate N_e

Approaches to estimate N_e

Expected CSH as function of effective population size and number of generations with a segment length x = 0,05 M (Flury et al., 2006)

Sonon Automotion States

The equilibrium value of CSH in a closed population is a function of segment length x (in Morgan) and effective population size

$$CSH_{\infty} = \frac{e^{-2x}}{e^{-2x} + 2N_e(1 - e^{-2x})}$$

With known segment length we can estimate the effective population size from the observed CSH, assuming the equilibrium state is reached

$$N_{e} = \frac{e^{-2x} (1 - CSH_{\infty})}{2(1 - e^{-2x})CSH_{\infty}}$$

Chicken populations studied

Lohmann Tierzucht GmbH 2 commercial lines LSL-A () , LB-A Institute of Farm Animal Genetics 3 experimental lines L68 •, R11 & R22 ()

- per line 10 roosters and 30 mother-daugther pairs
- compete pedigrees over 11 generations
- DNA samples from generation 2006/07

Methods

- 509 animals from all lines inclusive pedigree information (11 generations)
- Pedigree-based estimation of △F → N_e with the method of Woolliams (2007)
- Genotyping of 6 segments with 4-6 (S30) microsatellites (15'270 single data points)
- Haplotype reconstruction with PedPhase (Li & Jiang, 2003)
- Calculation of observed CSH, correction for CSH expected under Hardy-Weinberg and linkage equilibrium
- Marker-based estimation of N_e from corrected CSH value with the method of Simianer et al. (2007)

Pedigree-based N_e for chicken lines

LSL-A ()

Comparison of pedigree- and marker-based estimators of N_e

Comparison of pedigree- and marker-based estimators of N_e

Simulation:

- → 50 generations random mating, 3: = 1:1
- \rightarrow reference scenario: 100 animals per generation

→ bottleneck scenario: 10 animals per generation in generation 10 - 19

Pedigree-based estimates of Ne: ~ 100 (with 10 or 50 generations, w/w'out bottleneck)

Summary

- Pedigree-based and marker-based approaches yield different results
- Marker-based estimates of N_e are consistently smaller than pedigree-based estimates, especially so in (commercial) white layer lines
- Obviously much more homozygosity occurred on the molecular level than expected from the available (11 generation) pedigree
- Marker-based methods may be affected by historic events (e.g. population bottlenecks) and appear to produce systematically different results in defined scenarios

How much genetic information is needed to detect differences in $\rm N_{\rm e}$

Reference population with N_e = 30; 90 % power on the α = 0.05 level

Difference in <i>SE(CSH)</i>		Difference in CSH	lower critical N _e	upper critical N _e	Required information units
	± 0,25	± 0.00645	26.9	33.9	336
	± 0,50	± 0.01290	24.3	38.8	84
	±0,75	± 0.01935	22.2	45.3	37
	± 1,00	± 0.02580	20.4	54.3	21
				2517 2617	

1 information unit: 6 segments with on average 5 microsatellites

1 microsatellite ~ 3 SNPs → 84 information units = 7560 SNPs needed

High density SNP genotyping will soon provide a sufficient basis for marker-based estimation of $\rm N_{\rm e}$

Deutsche Forschungsgemeinschaft DFG

We would like to thank the German Research Foundation (DFG) for funding the project and Lohmann Tierzucht GmbH for providing samples and pedigree data