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Introduction

�World population in 2050: 9 million 
– Requires ~50% increase in food production

– few commercial breeds replace many locals

– few commercial companies manage these commercial breeds

�Loss of genetic diversity
– Both within and between breeds

– Loss of historical values

– Loss of typical landscapes

�High risk strategy

– Holsteins are being crossed with red cattle now
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Aim of genetic conservation :

�Maintain within and across breed diversity

– Within breeds (management of 1 population)

– Across breeds (management of several pops)

Aim of talk:

�Review methods for conservation

�Strategy: make local breeds profitable
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Principles of the management of
genetic variation

�Vgt=(1-Ft)Vg0 => need control of F or ∆F

�Ft = Ct-1 => need control of Coancest.

� => need control of

�

� equals average relationship of parents
– Weighted by number of offspring

– Including self relationships

�Control of controls Ft and Vgt
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Optimum Contribution Selection

�Maximises ∆G

�While restricting

�Maximises genetic gain and controls ∆F

(Meuwissen, ’97)
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Minimisation of inbreeding

�Minimise

�Flexible:

– May correct previous unequal contributions

– implementable in practical schemes
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Mating

�Less important than selection

– Random mating is generally quite OK

�Avoid mating of close relatives

– Avoids highly inbred offspring

– Delays the inbreeding; does not affect ∆F

�Factorial mating

– Make maternal HS instead of FS families

– Makes contributions of sires and dams less related
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The critical effective population size?

�Or: what rate of inbreeding is acceptable?

�Approaches to assess Necrit:

– Mutation meltdown : survival over 500 generations:

• Necrit~500 (Lynch et al., 1995) 

– Balancing natural selection vs. inbr. depression

• 50<Necrit<100 (Meuwissen & Woolliams, 1994)

– Balancing ’old’ vs. ’new’ inbreeding

• ’New F’ is first 20 gens., (Hinrichs et al., 2007)

• ’New F’ <10% if Ne~100

– Long term selection experiments: Ne=100 is OK
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The critical effective population size?

Conclusions:

�Not ONE answer possible

�Inbreeding is a chance process

�But consensus : 50<Necrit<100
– To be on safe side: Necrit ~ 100
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Use of other breed to reduce ∆F

1. Population in bottleneck
�Use as much as possible related breed

�Stop using 2nd breed as soon as possible

�OR: create ’meta-population’ from the two breeds

(Bennewitz et al., 2008)

2. Increase competitiveness
�Introgress desirable traits

� Use genetic markers

� Use phenotypes to maintain traits

�Merge with other related breeds
� Try to have one breeding goal
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Integrating live and cryo-conservation

1. Cryo-back-up

�In case of natural disaster

� Need embryos and semen to restore population

�In case of genetic problems

� Genetic defect can be removed by selection

� Cryo stored animals may have higher EBV

� Inbreeding depression problem:

� Use Cryo stored animals to reduce general F
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Integrating live and cryo-conservation

2. Cryo-aided live conservation

�Prolong generation interval by storing embryos: 

� more animals /gen

� L=1 => L=25 : 25 times bigger Ne

�Prolong L by storing semen:

� Infinite use of founder semen: ∆F = 0

� Finite storage time: generation interval effect as before

� Large number of founder males to keep F low
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Rotational breeding schemes

�Do not require pedigree recording

�E.g. several sire lines

– Mated to the commercial dams in turn

– Keep inbreeding of commercial animals low

– Requires big population

• Need several sire lines

– Rotate individual cryo-conserved sires over time

(Colleau & Avon, ’08)
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Get trait from conserved into commercial line  

�Introgression scheme: continuous backcross

– Use markers to maintain desirable trait

• Successful QTL detection

• Fine mapping of QTL

• Introgression

• Simultaneous detection and introgression (Yazdi et al.’08)

– Use phenotype to maintain desirable trait

• More difficult to maintain the trait

�Crossbreed, select over cross and purebred

– Crossbreeding increases the variation
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Upgrading using ’inferior’ breeds
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High density genotyping: SNP chips

(Habier et al., 2007)

�No pedigree recording required:

– Can estimate accurate A matrix from SNPs

• At least linear function of A

�Accurate A matrix of breeds
– Across and within breed A matrix



G
enetic C

onservation

17

N
O
R
W
EG
IA
N
 U
N
IV
ER
SITY O

F LIFE SC
IEN

C
ES

www.umb.no

High density SNP chips (cont.)

�Which chromosomal regions are related

�Can we pick interesting traits from conserved
breeds by only genotyping them?

– Requires across breed LD between SNPs and QTL

– E.g., suppose we know:

• Gene J may be involved in ’disease resistance’

• Breed A has a very different haplotype for gene J

• investigate ’disease resistance’ effect of the gene J 
haplotype of breed A 
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SNP chip : estimate historical Ne

�So linear regression of 1/R2 on c gives Ne

�estimate Ne at different times in the past:
– look at different distances, c (Tenesa et al., ’07)

– Detect bottle necks

�More accuate estimates of Ne:
– Model multi-locus LD as function of past Ne 

�Model LD as function of Time since breeds
splitted from each other => seperation time 
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Conclusions

�Try to make endangered breed profitable

�Try to achieve Ne=100, ∆F=0.5%

�OC selection can:

– Restrict ∆F, maximise ∆G

– Requires A matrix (pedigree or dense SNPs chips)

�In absense of A (pedigree)

– Rotational breeding schemes

�Selection more important than mating
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Conclusions (cont.)

�Traits from inferior breeds can be used

– Genomic selection makes it profitable

�High density SNP chips

– Can make pedigree recording redundant

– May reveal historical structure of the population


