Effects of different genetic components on reproductive performance in Finnhorses and Standardbred trotters

Jenni Sairanen¹, Kaisa Nivola², Terttu Katila² and Matti Ojala¹

¹⁾University of Helsinki, Dept. of Animal Science, ²⁾Dept. of Production Animal Medicine

Introduction: horse fertility

- three perspectives: stallion, mare, (expected) foal
- outcome of an individual mating: empty vs. foal; zero vs. one
- foaling rate:
 the percentage of the matings that produce a living foal
- demographic level

Introduction: genetic effects

- additive genetic effect: heritability
- maternal genetic and permanent environmental effects
- stallion: permanent environmental effects
- inbreeding level of the expected foal

Introduction: breeding for fertility

- heritability is generally low for fertility traits
- but: breeding programs can be used to improve fertility
- breeding value estimates: recognizing the horses that are prone to fertility problems

Materials

- the mating database of Standardbreds (SB) and Finnhorses (FH) from 1991 to 2005 (from Suomen Hippos)
- 33 679 (SB) and 32 731 (FH) mating records
- pedigree database (Hippos)

Methods

- PEDIG -software: inbreeding coefficients
- linear mixed model
- VCE6: (REML) variance component estimates for random factors
- PEST:
 - *F-test for fixed factors
 - *best linear unbiased estimates (BLUE) for fixed factors
 - *best linear unbiased predictions (BLUP) of breeding values

The observation and the fixed and random factors in the model

observation = outcome of the mating, 0 or 1

stallion age group: 1-6, 7-9, 10-13, 14-16, 17-28 years

mating type: on site AI, transported chilled, frozen,

natural mating

inbreeding class: based on inbreeding coefficient of

expected foal

mare type and age class: maiden, barren, rested or foaled

within five age groups

year of mating: 1991 to 2005

month of last mating class: 1 to 3, 4, 5, 6, 7, 8, 9 to 12

stallion: permanent environmental effect of stallion

permanent environmental effect of mare

maternal: genetic maternal effect

animal (planned foal): additive genetic effects

residual

mare:

Results

average foaling rates:

Standardbred 72.6%

Finnhorse 66.3%

average level of inbreeding for foals born in Finland 1992-2006:

Standardbred 9.8%

Finnhorse 3.6%

Results: age group of stallion

Estimated effects of different age groups on foaling rates compared to 10 to 13 year olds

	Stand	ardbred	Finnhorse		
Age group,					
years	n	estimate 1)	n	estimate 1)	
1 to 6	4 006	2.29	2 609	3.64	
7 to 9	8 247	2.18	6 214	1.63	
10 to13	11 648	0.00	9 679	0.00	
14 to 16	5 244	-0.40	6 654	-0.87	
17 to 28	4 521	-4.30	7 543	-2.67	

¹⁾ difference (in %-units) from the class of comparison, 0.00

older stallions tend to have lower fertility than younger ones

Results: mating type

Estimated effects of different classes on foaling rates compared to on site insemination

	Standa	rdbred	Finnhorse		
Mating type	n	estimate 1)	n	estimate ¹⁾	
On site insemination	13 924	0.00	9 158	0.00	
Transported semen	9 612	-3.69	7 073	-3.60	
Natural mating	8 580	-2.26	16 468	-3.23	
Frozen semen	1 550	-4.69			

¹⁾ difference (in %-units) from the class of comparison, 0.00

• on site AI was the most efficient breeding method

Results: inbreeding class of expected foal

- higher level of inbreeding -> lower foaling rate
- but: the most inbred animals did not get the worst results

Inbreeding class, Standardbred: difference from median class, %-units

Inbreeding class, Finnhorse: difference from median class, %-units

Results: genetic factors

Foaling rate: relative **proportions of total variance** from different models for **random effects**

Random effect		Standardbred		Finnhorse	
		Model 1	Model 2	Model 1	Model 2
additive genetic (foal), h ² -% 1)		3.7	3.4	5.5	9.8
stallion (perm. environment) 2)		1.4	1.7	1.5	1.3
mare	(perm. environment) 3)	2.1		5.7	
	(maternal genetic) 3)		4.7		3.2

 $^{^{1)}}$ s.e. between 0.01 and 0.02 $^{2)}$ s.e. under 0.005 $^{3)}$ s.e. under 0.01

•heritability for Standardbred is lower than for Finnhorse

⁻⁻ not in the model

Conclusions: genetic factors

- The stallion explained a smaller part of the total variance of foaling rate than the mare
- Maternal genetic and permanent environmental effects could not be separated from each other in the available data sets
- Model1 is more realistic than Model2

Conclusions

- Foaling rate in Standardbreds (72.6%) was better than in Finnhorses (66.3%)
 - -> possibly due to differences in management, or breed specific
- Even though the general inbreeding levels were different between breeds, the effects of increased inbreeding were similar