

Functional Food of Animal Origin: What's That?

Scientific Concepts of Functional Foods in Europe Consensus Document: British Journal of Nutrition (1999), 81, S1-S27

ILSI Europe International Symposium on Functional Food; Malta 9 – 11 May 2007 http://europe.ilsi.org/A

Definition:

A food can be regarded as "functional" if it is satisfactorily demonstrated to affect beneficially one or more target functions in the body, beyond adequate nutritional effects in a way which is relevant to either an improved state of health and well-being and/or the reduction of risk of disease.

Nils-Georg Asp, Lund University, Sweden (2007)

Functional Food of Animal Origin: What's That?

Functional Foods are Foods with Claims!

Two basic types of claims:

- 1. What the product contains: Nutrion claims (comparative claims, energy reduced) (nutrient increased or reduced, light products)
- 2. What the product does: Health claims

Nils-Georg Asp, Lund University, Sweden (2007)

Functional Food of Animal Origin: What's That?

Natural - A food to which a component has been added

- A food from which a component has been removed

- A food in which the bioavailability of one or more components has been modified

FUNCTIONAL FOODS must remain FOODS (no drugs)

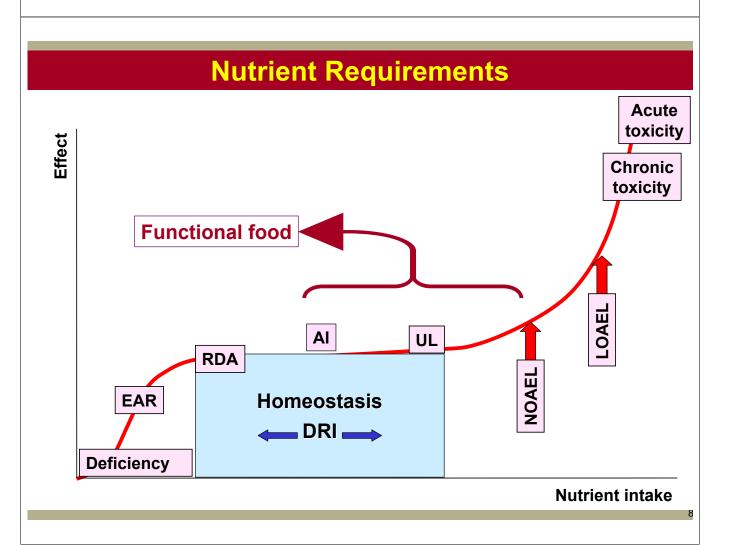
(FUFOSE, 1999)

Functional Food of Animal Origin: What's That?

Functional Foods are Foods with Claims!

The establishment of nutrient profiles should take into account the content of different nutrients and substances with a **nutritional or physiological effect**, in **particular those such as fat**, **saturated fat**, **trans-fatty acids**, **salt/sodium and sugars**, **excessive intakes of which in the overall diet are not recommended**, as well as **poly- and monounsaturated fats**, **available carbohydrates other than sugars**, **vitamins**, **minerals**, **protein and fiber**. When setting the nutrient profiles, the different categories of foods and the place and role of these foods in the overall diet should be taken into account and due regard should be given to the various dietary habits and consumption patterns existing in the Member States.

REGULATION (EC) No 1924/2006 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 20 December 2006 on nutrition and health claims made on foods


Functional Food of Animal Origin: What's That?

Functional Foods are Foods with Claims!

Hot areas for Functional Food development:

- Diet-related cardiovascular disease
- Bone health and osteoporosis
- Physical performance and fitness
- Body weight regulation, insulin sensitivity and diabetes
- Diet related cancer
- Mental state and performance
- Gut health and immunity

Passclaim: Nils-Georg Asp, Lund University, Sweden (2007)

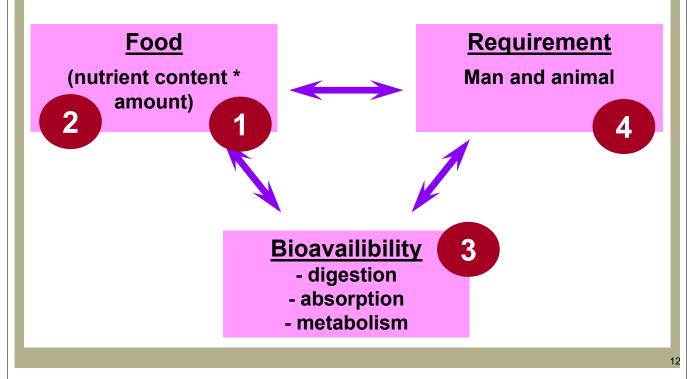
Nutrient Content of Typical Animal Products (selection)							
	DM	ME	СР	СНО	CL	Cholest.	
Per 100 g	g	kJ	g	g	g	mg	
Milk							
Cow	12.8	280	3.3	4.7	3.8	12	
Others*	13 – 17	280 – 403	3.6 – 5.3	4.2 – 4.7	3.9 – 6.3	10 - 12	
Meat (lean)							
Ruminants	29 - 32	560 - 695	21 - 23	< 1	4.5 – 9	46 - 58	
Pig	30 - 35	580 - 845	19 -23	< 1	5 – 14	56 - 60	
Poultry	27 - 34	456 - 685	18 - 25	< 1	1 – 10	63 - 94	
<u>Eggs</u>	25.6	645	12.8	0.7	11.3	396	

* From goat to sheep

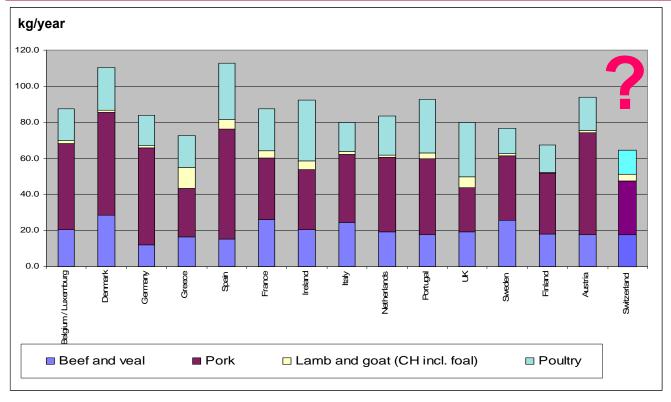
Souci-Fachmann-Kraut (2000) and Swiss Meat Table (2006)

Enormous variation between species, origin, animal feeding and different products

10


on Nutrient Composition Meat 2006	Pork Loin									
	Constituents	Unit	Average	SD	Min	Мах				
	Main ingredients									
ă	Energy	kJ	579	54.68	486	670				
	Energy	kcal	138	13.30	115	160				
00	Water	g/100g	69.5	1.38	67.2	71.5				
U O	Total Nitrogen	g/100g	3.7	0.11	3.4	3.9				
nt Col 2006	Protein	g/100g	22.9	0.66	21.5	24.4				
	Fat	g/100g	5.1	1.50	2.5	8.0				
<u>.</u>	Ash	g/100g	1.2	0.15	1.0	1.6				
	Minerals and trace elements									
5	Sodium	mg/100g	38	4.11	33	45				
on N Meat	Potassium	mg/100g	368	16.76	327	396				
	Calcium	mg/100g	3.7	0.27	3.3	4.1				
0 ≥	Magnesium	mg/100g	21	1.59	18	23				
	Phosphorus	mg/100g	202	8.32	182	215				
	Iron	mg/100g	0.4	0.06	0.3	0.5				
n	Zinc	mg/100g	1.3	0.15	1.1	1.7				
H-	Manganese	µg/100g	7.7	2.74	1.9	11.0				
0	Copper	µg/100g	41	22.98	4	71				
<u>v</u>	Molybdenum	µg/100g	1.1	0.51	0.4	1.7				
	Selenium	µg/100g	16	4.73	11	25				
Swiss Table of	Lead	The concer	ntrations of these	two elements ar	e much lowe	r than the				
	Cadmium	than the lev	els allowable in r	meat (100 and 50) µg/100 g)					

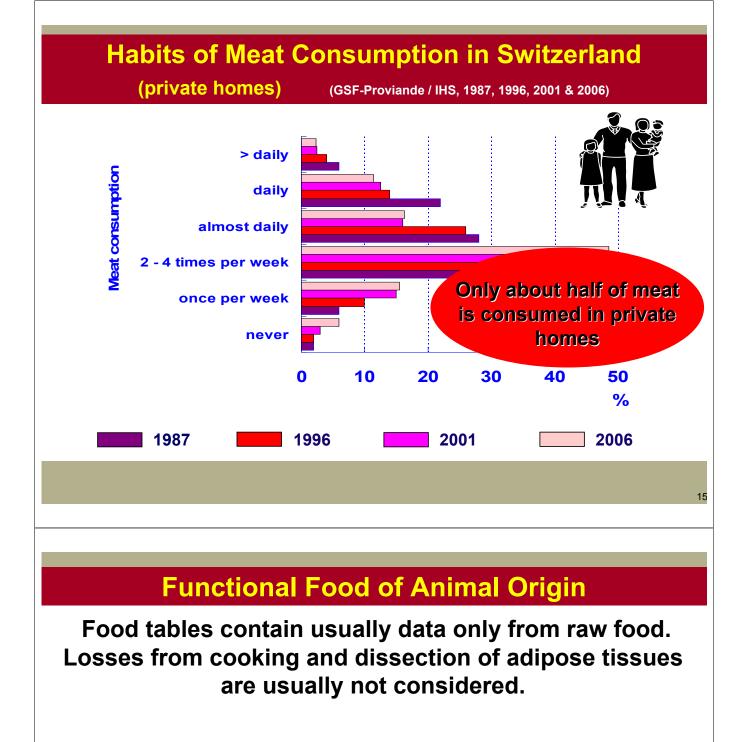
Swiss Table on Nutrient Composition of Meat 1990 - 2006


Species	Cut		Total fat g/100g		Protein g/100g	
		2006	1990	2006	1990	
Beef	Entrecote	4.5	6.4	23.2	22.1	
	Braising steak	1.8	3.5	22.4	21.6	
	Simmer meat lean	5.5	7.0	20.7	19.6	
	Simmer meat streaky	16.6	21.8	19.5	17.3	
	Minced meat	7.5	8.9	21.6	19.8	
Veal	Chop (without bone)	8.7	13.8	20.7	18.9	
	Braising steak	1.8	1.6	21.9	22.2	
	Breast	14.5	14.5	18.3	18.7	
Pork	Chop (without bone)	10.4	10.9	21.4	20.6	
	Braising steak	4.9	7.8	20.6	19.4	
	Minced meat / Ragout	6.6	6.9	20.8	20.4	
Lamb	Chop (without bone)	9.5	20.6	20.2	17.3	
	Gigot	8.2	10.5	20.2	19.6	
Chicken	Breast with skin	6.5	5.9	23.3	21.0	
	Breast without skin	1.0	1.8	24.6	22.1	
	Leg with skin	10.2	12.6	17.9	17.6	
	Led without skin	6.2	8.4	19.7	18.2	
Turkey	Escalope	1.1	1.3	25.6	24.1	

Nutrients and Nutrient Requirement

Farm animal and man!!!

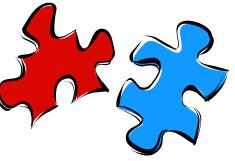
Meat Supply in Countries of EU and Switzerland (without Fish) 2006 [Data from ZMP (EU) and Proviande (CH), 2007] in kg/year

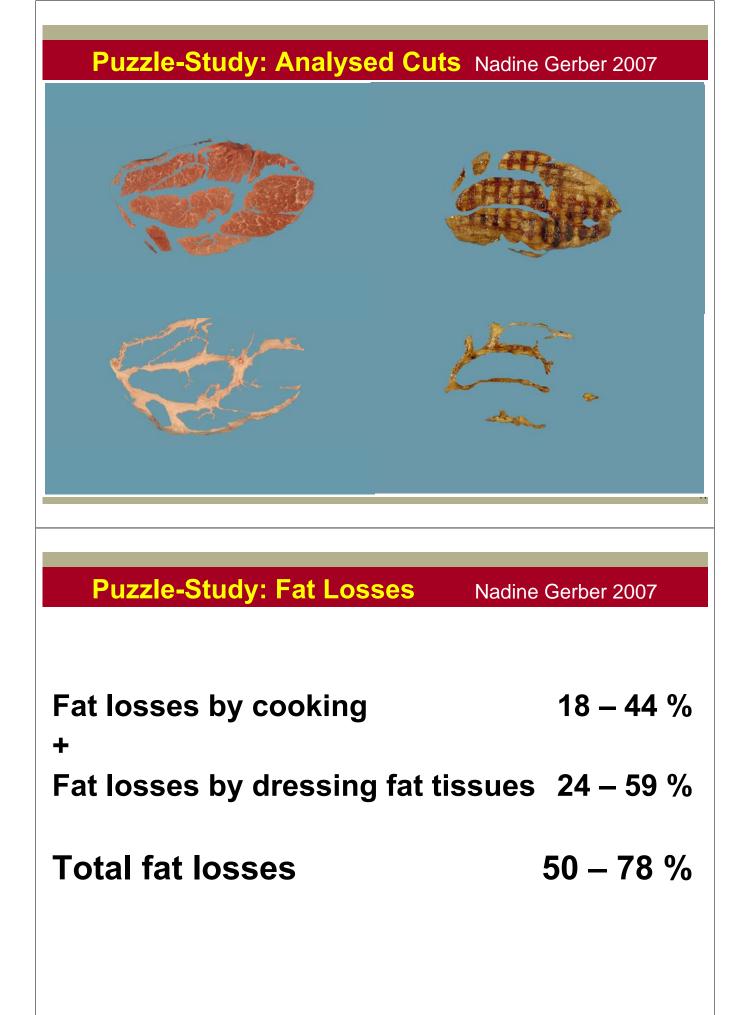


13

14

Meat Production and Supply in USA							
Estimated carcass - retail – boneless USA (2005)							
(g/d)	carcass	retail	boneless				
pork	79	62	58				
beef	116	81	78				
veal	1	1	1				
sheep & goat	2	1	1				
slaughter animals	198	145	138				
poultry	146	123	92				
fish & shellfish	?	20	?				
total meat	≈ 370	288	≈ 240				


Sources: USA: ers.usda.gov/Data/FoodConsumption/FoodAvailSpreadsheets.htm#mtredsu (2007)


Improved estimation of "real" nutrient intake by:

Analysis of fresh and cooked meat cuts

Split into meat and adipose tissues

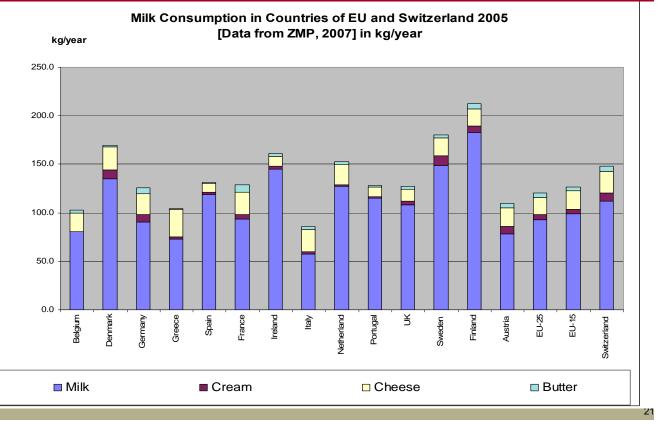
Puzzle study: N. Gerber et al., 2007

Puzzle-Study: Mineral Losses

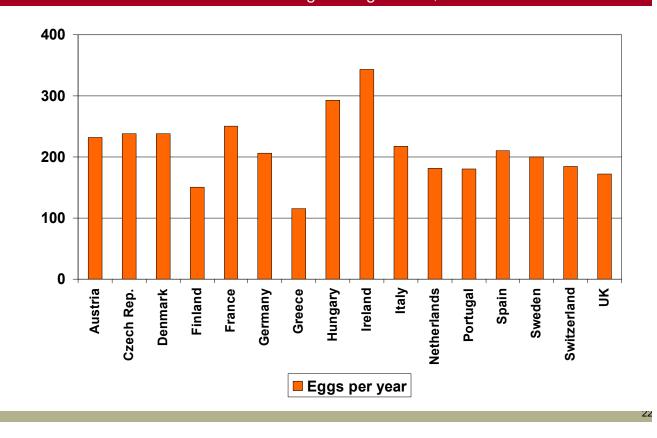
Nadine Gerber 2007

- Losses depend primarily method of cooking
- Dry cooking
 - > Losses from 10 to 20%
- Wet cooking (boiling)
 - > Losses from 10 to 20%
 - > Washing out effects
 - Depends on use of meat stock

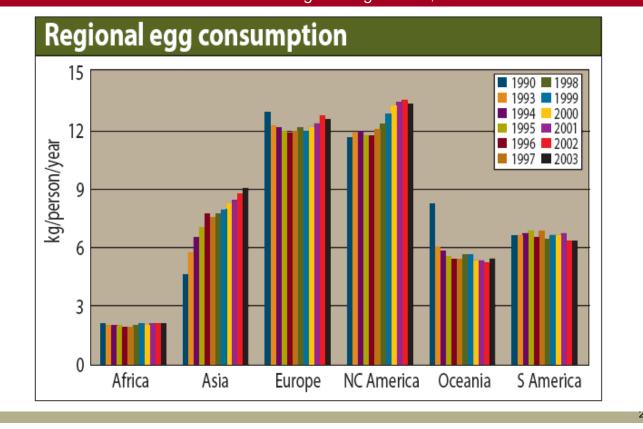
Puzzle-Study: Vitamin Losses

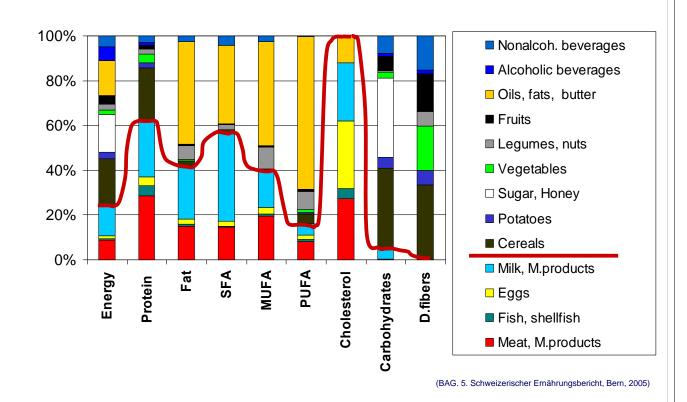

Nadine Gerber 2007

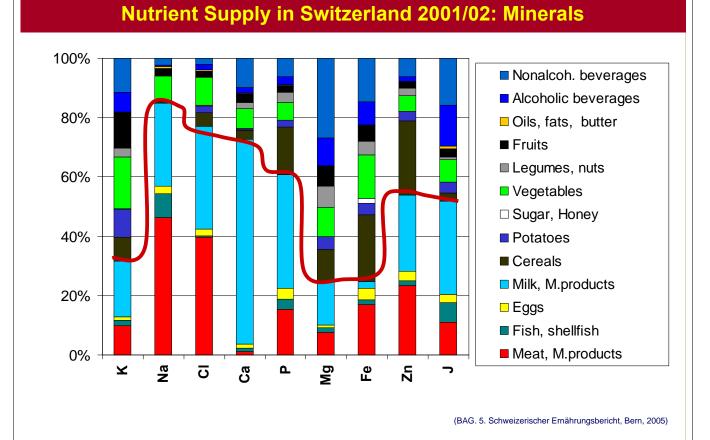
Losses of all analyzed vitamins


- Fat soluble vitamins less than water soluble
- Water soluble vitamins:

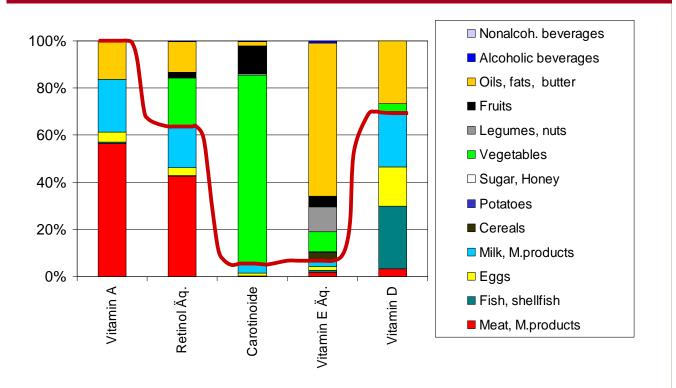
Thiamin (B₁) biggest losses from 73 to 100% (inactivation by heat or extraction)


Milk Supply in Countries of EU and Switzerland 2005 Data from ZMP, 2007

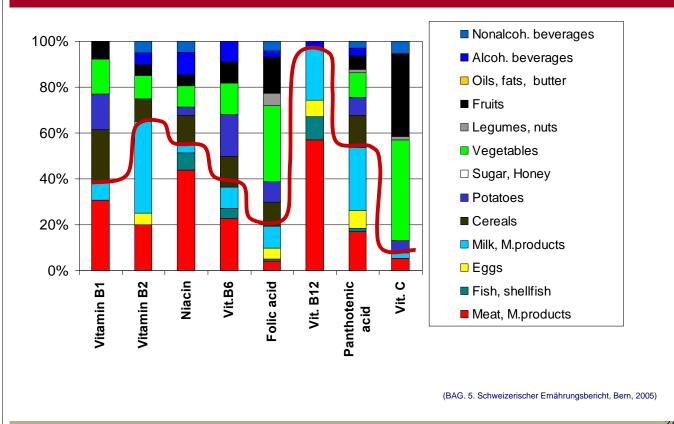

Egg Supply in Countries of EU and Switzerland 2005 www.wattexecutiveguide-digital.com, 2007



Egg Supply in World Regions 1990 - 2003 www.wattexecutiveguide-digital.com, 2008



Nutrient Supply in Switzerland 2001/02: Macro Nutrients



Nutrient Supply in Switzerland 2001/02: Fat Soluble Vitamins

Nutrient Supply in Switzerland 2001/02: Water Soluble Vitamins

Iron, Heme Iron And Zinc Intake Provided by Daily Lean Meat Consumption in Switzerland 2004 (M. Leonhardt, 1999)

Meat cut	meat	Thiamin	Riboflavin	Vitamin E	Iron	Zink-
	consumption	intake	intake	intake	intake	intake
	g/d	mg/d	mg/d	mg/d	mg/d	mg/d
Pork	49	0.40	0.11	0.17	0.5	1.7
Beef	29	0.01	0.04	0.06	0.5	1.6
Veal	10	0.01	0.02	0.03	<0.1	0.3
Chicken	14	0.02	0.03	0.12	0.1	0.2
Total	102	0.44	0.20	0.38	1.1	3.8
DACH (2000) *	men:	1.3 (34 / 31)	1.5 (13 / 7)	15 (3 / <i>1</i>)	10 (11 / 5)	10 (38 / 17)
recommendation	women:	1.0 (44 / <i>40</i>)	1.2 (17 / 9)	12 (3 / 1)	15 (7 / 3)	7 (54 / 24)
* in parentesis: Contribu						
* In italics: Contribution						

35 % Vit. B1 from pork

10 to 30 % available Fe 30 to 50 % available Zn

Meat	Consumption	Iron		Zinc		Selenium
	g/d	mç	g/d	mg/d		µg/d
Pork	60	0.	.4	1.3		9.7
Beef	25	0.4		1		2.4
Veal	9	0.1		0.2		0.9
Lamb	3	0.	.1	0.1		0.4
Poultry	24	0.1		0.2		5.4
Total	121		1	1.9	9	18.8
		Men	Women	Men	Women	estimated values
Recommendation D-A-CH ^a		10 mg/d	15 mg/d	10 mg/d	7 mg/d	30-70 µg/d
Contribution of meat		10% 7%		27% 39%		27-63%

Estimated Daily Intake of Animal Food (EU)

Consumption of food from animal origin (Commission Directive 2001/79/EC) or SCOOP data (EC, 2004)

Tissue/product	EU Guidelines daily intake (g)	Se load µg/d	SCOOP data daily intake (g)	Se load μg/d
Muscle meat	300	105	105	37
Liver	100	80	35	28
Kidney	50	125	10	9
Fat	50		?	-
Milk	1'500	68	280	13
Egg	100	50	36	18
Σ		428		105

Contribution of Meat to Human Nutrition

Desired	Milk	Meat	Egg
Protein	***	***	***
essential amino acids	***	***	***
Carbohydrates	**		
Lipids	*	**	**
Ess. FA	*	**	***
CLA	***	**	*
Minerals	Ca	Fe, Zn, Se	Se
(generally well absorbed)	others	others	others
<u>Vitamins</u> By	vit., vit.D others	B vit. others	B vit., vit.E others

Contribution of Meat to Human Nutriton

Desired Protein Ess. amino acids

Lipids Ess. fatty acids, CLA, ...

<u>Minerals</u> Fe, Zn, Se, Cu, others (generally well absorbed)

Vitamins B vitamins, others

Undesired

Purins (bowels)

Total fat, cholesterol, sat. FA (<C16), to many PUFA

ev. Na in meat products

ev. Vit. A in bowels (liver)

31

How Can we Influence Meat Quality by Nutrition

<u>Protein</u> Essential amino acids Purines		hardly hardly	
<u>Fat</u> Total fat Fatty acids (PUFA, MUFA Cholesterol	A, SFA)	yes yes hardly	most FA
			3
How Can we Influen	ce Meat C	uality b	y Nutrition
<u>Minerals</u> Fe, Zn, Se, others <u>Vitamins</u> B - vitamins	yes for Zn, Se hardly		

yes

hardly

hardly

B - vitamins

Fat soluble vitamins

Residues

<u>Additives</u>

vit. A in liver

If properly applied

34

EAAP 2008: 59th Annual Meeting Vilnius, Lithuania

Functional Food of Animal Origin

Refinement of nutrition or a padding for the market?

Milk, meat and eggs contribute (eaten in reasonable amounts) significantly to cover the nutrient requirements of men in a highly natural way. They do not need the claims as FUNCTIONAL FOOD.

Negative nutritional aspects are often overvalued.

Fresh food or products from animal origin can be enriched via animal nutrition or with supplements during processing.