Long-chain PUFA from animals: do they have a role in human nutrition?

Florian Leiber, Caspar Wenk

Department of Agricultural and Food Science, ETH Zurich, Switzerland

fleiber@ethz.ch

Ice cream made with long-chain PUFA from fish oil

The first reduced-fat

pany Arthur D. Little Inc. The fish flavour of the refined fish oil added to the ice cream formulation is minimized by using both and modifications to manufacturing technology.

EJLST (11) 103; 2001

Hauswirth, C.B et al. (2004) High Omega-3 Fatty Acid Content in Alpine Cheese— The Basis for an Alpine Paradox? *Circulation 109*, 103–107.

- α-linolenic acid (ALA): C18:3n-3 a typical terrestric plant fatty acid
- Eicosapentaenoic acid (EPA): C20:5n-3 derived from ALA in mammals / part of marine fats
- Docosapentaenoic acid (DPA): C22:5n-3 derived from EPA in mammals / part of marine fats
- Docosahexaenoic acid (DHA): C22:6n-3 derived from DPA in mammals / large part of marine fats

Reviewed in: Simopulos, 2000; Sinclair et al., 2002

Effect of feeding a 25g/kg-linseed-diet to growing pigs

%	Muscle					
	Neutra	al lipids	Phosph	nolipids		
Diet	control	linseed	control	linseed		
ALA	0.26	1.05	0.8	3.0		
EPA	0.03	0.04	1.1	3.1		
DPA	0.06	0.12	1.8	3.0		
DHA	0.05	0.05	1.5	1.3		

Sottnikova, 2008

Porcine meat and fat:

Balancing firmness and stability vs. "healthy fatty acid" contents

	Control	porcine lard	Olive-oil	soybean-oil
PUFA (%)	14.7	15.0	14.0	25.4
C18:3n3 (ALA) (%)	0.93	0.94	0.92	2.0
C18:2n6 (%)	12.1	12.0	11.8	21.1
Oxidative stability (h)	4.33	4.10	4.59	2.36
firmness (g)	151	114	56	53

N-3 fatty acids in porc

Gläser et al., 2002

Concentrations of n-3 FA in eggs (mg / g yolk)

	ALA	DHA	n6/n3
Free-ranging	6.9	6.6	1.3
Supermarket-Egg	0.5	1.1	19.9
Flax-Egg	21.3	5.1	1.6
Fishmeal-Egg	4.1	6.5	6.6

adapted from Simopoulos, 2000

Fatty acid patterns in meat of rabbits fed different diets

Leiber et al., 2008

Razminowicz et al., 2006 Razminowicz et al., 2008 N-3 Fatty Acids in beef (mg/100g *musculus I.d.*)

	Pasture beef	Conven- tional beef	Grass only	Grass + conven- tional conc.	Grass + linseed conc.
C18:3n-3 (ALA)	22.9 ^a	12.2 ^b	33.3	27.8	31.2
C22:5n-3 (DPA)	14.3 ^a	8.8 ^b	20.8	19.9	19.9
C22:6n-3 (DHA)	1.7	1.1	2.55	2.50	2.42
Total n-3	49 ^a	27 ^b	75	66	71
n-6/n-3	1.7 ^b	5.0 ^a	1.25 ^b	1.45 ^a	1.33 ^b

N-3 fatty acids in beef

Concentrations of ALA in milk (g / 100g FAME)

N-3 fatty acids in milk

Leiber et al., 2005

Omega-3 fatty acids in ruminants

Leiber et al., 2004

ALA in milk or beef is a "survivor" of the ruminal fermentation

N-3 contents in different animal products (mg/100g raw product)

	Wild salmon	Grass beef	Beef Sirloin conv.	Beef sirloin U.S.	Pork chop	Rabbit fed forage	Cheese convent	Cheese alpine
ALA	50	33.3	39	16	57	246	241	516
DPA	120	20.8	23	14	14	45	38	54
DHA	629	2.6	2	nd	2	15	nd	4

Hamilton et al., 2005Gerber, 2008Leiber et al., 2005Razminowicz et al., 2008Leiber et al., 2008

Hypothetic daily intakes of n-3 FA with milk products of different origin

mg/day	Milk prod. conv	Milk prod. alpine	Difference	How much salmon? (g/day)
ALA	350	612	398	796
EPA	42	54	12	3
DPA	55	78	23	19
DHA	-	6	6	1

Calculated from Leiber et al., 2005; ZMP, 2007 [France]; Hamilton et al., 2005

Hypothetic daily intakes of n-3 FA with milk products of different origin

mg/day	Milk prod. conv	Milk prod. alpine	Difference	Relation of the difference to daily intake of french men (median) (%)
ALA	350	612	398	43
EPA	42	54	12	10
DPA	55	78	23	34
DHA	-	6	6	3

Calculated from Leiber et al., 2005; ZMP, 2007 [France]; Astorg et al., 2004

Hypothetic daily intakes of n-3 FA with milk products of different origin

mg/day	Milk prod. conv	Milk prod. alpine	Difference	Relation of the difference to daily intake of french men (lower 5th percentile) (%)
ALA	350	612	398	67
EPA	42	54	12	44
DPA	55	78	23	69
DHA	-	6	6	9

Calculated from Leiber et al., 2005; ZMP, 2007 [France]; Astorg et al., 2004

Omega-3 fatty acids in animal products:

 \dots does α -linolenic acid help?

To what extent ALA is converted to long-chain n-3 PUFA?

Effects of dietary α -linolenic acid (ALA)

(estimated from plasma concentrations)

Estimated efficiency of conversion of n-3 FA (Pawlosky et al., 2001)

Differential distribution of n-3 FA in rabbits' tissues

Tissue	Perirenal ad	lipose tissue	Muscl	e tissue
Diet	grass	grass+oats 1:1	grass	grass+oats 1:1
Total n-3 (%)	22.13	7.19	15.11	6.07
Long-chain n-3 in total n-3 (%)	2.8	3.5	24	27

(calculated from Leiber et al., 2008)

Effect of feeding a 25g/kg-linseed-diet to growing pigs

%		Mu	Dr	oin		
	Neutra	utral lipids P		Phospholipids		alli
Diet	control	linseed	control	control linseed		linseed
ALA	0.26	1.05	0.8	3.0	nd	nd
EPA	0.03	0.04	1.1	3.1	0.05	0.11
DPA	0.06	0.12	1.8	3.0	0.28	0.56
DHA	0.05	0.05	1.5	1.3	9.66	9.81

N-3 fatty acids in porcine tissues

Sottnikova, 2008

Effects of dietary ALA and DHA

	Control diet	High ALA	High DHA	Very high DHA
Retinal phospholipids	8.7 ^c	16.4 ^b	17.6 ^b	25.5 ^a
Brain phospholipids	8.6 ^c	11.5 ^b	11.5 ^b	15.0 ^a
Heart phospholipids	0.30 ^c	0.75 ^b	5.67 ^a	5.60 ^a

DHA concentrations in phospholipids (% of total phospholipid fatty acids)

DHA in tissues of guinea pigs 1999

adapted from Abedin et al.,

-Animal nutrition may largely influence the ALA contents of food products, but, only to a much lesser degree, the long-chain PUFA (EPA, DPA, DHA).

-Increased ALA intakes do increase mainly EPA and DPA but to a lesser extent DHA.

-The effects of dietary ALA on long-chain n-3 PUFA significantly differ between tissues.

-Evaluation of ALA effects is only possible in the respective target tissues, or, even more precisely, in the target function.

trans-Fatty acids in animal products

Wenk et al., 2008

trans-Fatty acids in animal products

(SCHEEDER et al., 2006)

CLA in animal products

Highland

Leiber et al., 2005

Conclusion

• Unsaturated fatty acids in animal products are still an issue for the improvement of nutritional quality of these products

- Of course, some effects may be still overestimated, but it seems too early to give final answers
- Additionally, fatty acid profiles are useful indicators for different digestive and metabolic processes, particularly in ruminants
- The fatty acid story may provide links to other important issues of the recent agricultural debate – and this opens horizons, also for the animal nutrition research

cited literature

•Abedin L, Lien EL, Vingrys AJ, Sinclair AJ (1999) The Effects of Dietary α-Linolenic Acid Compared with Docosahexaenoic Acid on Brain, Retina, Liver, and Heart in the Guinea Pig. Lipids 34: 475-482 •Astorg P, Arnauld N, Czernichow S, Noisette N, Galan P, Hercberg S (2004) Dietary Intakes and Food Sources of n-6 and n-3 PUFA in French Adult Men and Women. Lipids 39: 527-535 •Gerber N (2008) PhD Thesis, ETH Zurich •Gläser KR, Wenk, C, Scheeder MRL (2002) Effect of Dietary Mono- and Polyunsaturated Fatty Acids on the Fatty Acid Composition of Pigs' Adipose Tissues. Arch. Anim. Nutr.56: 51-65 •Hamilton MC, Hites RA, Schwager SJ, Foran JA, Knuth BA, Carpenter DO (2005) Lipid Composition and Contaminants in Farmed and Wild Salmon. Environ Sci Technol 39: 8622-8629 •Leiber F, Kreuzer M, Nigg D, Wettstein HR, Scheeder MRL (2005) A study on the causes for the elevated n-3 fatty acids in cows' milk of alpine origin. Lipids 40:191-202 •Leiber F, Scheeder MRL, Wettstein HR, Kreuzer M (2004) Milk fatty acid profile of cows under the influence of alpine hypoxia and high mountainous forage guality. J Anim Feed Sci 13 (Suppl 1):693-696 •Leiber F, Meier JS, Burger B, Wettstein H-R, Kreuzer M, Hatt J-M, Clauss M (2008) Significance of coprophagy for the fatty acid profile in body tissues of rabbits fed different diets. Lipids 43: •Pawlosky RJ, Hibbeln, JR, Novotny JA, Salem N (2001) Physiological compartmental Analysis of α-linolenic acid Metabolism in Humans. J Lipid Res 42: 1257-1265 •Razminowicz RH, Kreuzer M, Scheeder MRL (2006) Quality of retail beef from two grass-based production systems in comparison with conventional beef. Meat Sci 73:351-361 Scheeder MRL (2006), unpublished data Simopoulos AP (2000) Human Requirement for N-3 Polyunsaturated Fatty Acids. Poultry Sci 79:961-970 •Sinclair AJ, Attar-Bashi NM, Li D (2002) What is the role of α-linolenic acid for mammals? Lipids 37:1113–1123 •Sottnikova I (2008) PhD Thesis, ETH Zurich •Wenk C et al. (2008) Trans-Fettsäuren in Frischfleisch aus dem Schweizer Fachhandel. Schriftenreihe Institut für Nutztierwissenschaften 30: 128-131 •ZMP (2007) Milch 2007 ISBN 978-3-86720-027-1