Bundesforschungsinstitut für Tiergesundheit Federal Research Institute for Animal Health

Assessment of effects of methane inhibitors in ruminants

Peter Lebzien and Gerhard Flachowsky

Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), Federal Research Institute for Animal Health, Braunschweig Germany peter.lebzien@fli.bund.de

Bundesforschungsinstitut für Tiergesundheit Federal Research Institute for Animal Health

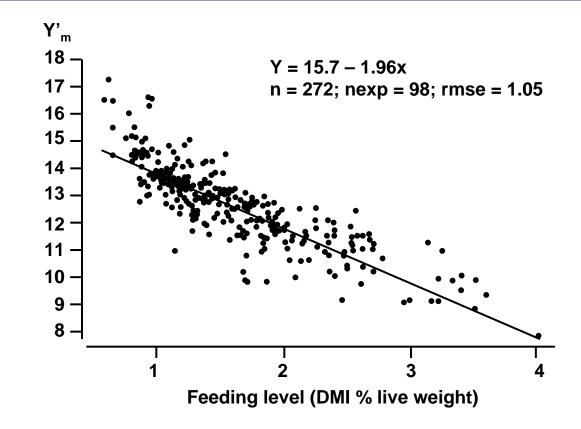
Some headings in the German press

"Eating beef impairs the climate"

> "Will the "waste gas tax" for cows come?"

"Belching cows impairs our climate"

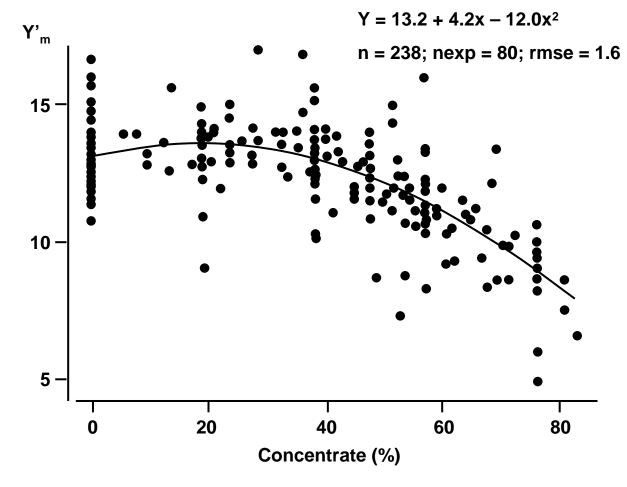
Bundesforschungsinstitut für Tiergesundheit Federal Research Institute for Animal Health


Factors affecting ruminal methane production

- Feeding level (DMI, % live weight)/ Mean retention time in the rumen
- Frequency of feeding
- Chemical composition of the ration (amount and type of fat and carbohydrate)
- Proportion of concentrate (ruminal pH)
- Degradation-rate of the feedstuffs

ELI

Bundesforschungsinstitut für Tiergesundheit Federal Research Institute for Animal Health

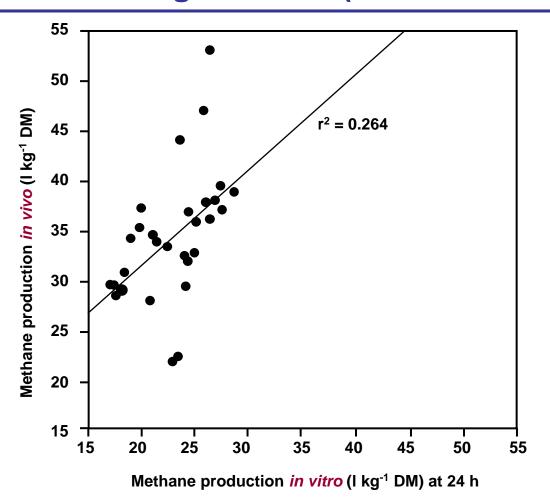

Influence of feeding level on Y'_m (Sauvant and Giger-Reverdin 2007)

Y'_m = gross energy in methane (% of gross energy intake)

FRIEDRICH-LOEFFLER-INSTITUT

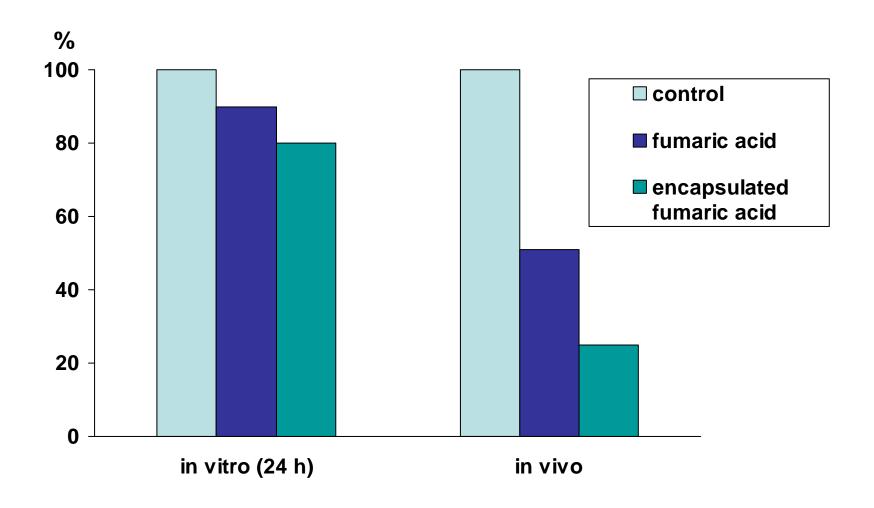
Influence of dietary proportion of concentrate on Y'_m (Sauvant and Giger-Reverdin 2007)

Y'_m = gross energy in methane (% of gross energy intake)


FRIEDRICH-LOEFFLER-INSTITUT

Some feed additives tested for reducing methane emissions

Additive	Effect on CH ₄	Questions, problems, risks
Halogenated methane analogues	\mathbf{h}	 Potentially toxic Possible transfer to edible animal products Only transient effects Too expensive Not authorised in Europe
lonophores (e. g. monensin)	\checkmark	Not authorised in Europe
Propionate enhancers (malate, fumarate)	(↓) - ↓↓	 Rumen pH ↓ (acidosis) DMI ↓ Onerous and expensive (about 2 kg for -10 % CH₄) Long term <i>in vivo</i> experiments are needed
Lipids, some fatty acids	Depends on the type and amount	 Too high amounts depress fibre fermentation Effects on fatty acid composition in animal products has to be considered Further research is needed
Yeasts	In vitro: (↓) In vivo: ?	 Validation of specific strains in vivo is needed
Saponine, Tannine	Depends on the kind of plant	 A lot of different chemical compounds (-mainly from tropical plants) Optimal dose ? Can be negative for animal health, digestibility and feed intake Long term <i>in vivo</i> experiments are needed
Plant extracts	Depends on the kind of plant	Long term <i>in vivo</i> experiments are lacking


FRIEDRICH-LOEFFLER-INSTITUT

Relationship between methane produced *in vivo* and *in vitro* from a range of diets (Moss and Givens 1997)

FRIEDRICH-LOEFFLER-INSTITUT

Influence of fumaric acid and encapsulated fumaric acid on methane formation *in vivo* and *in vitro* (% of control, Wallace et al. 2006)

FRIEDRICH-LOEFFLER-INSTITUT

Proposal for three stages for assessing the CH₄ **inhibition potential of feed additives in ruminants**

- 1. In vitro screening of various substances (if necessary with different rations)
- 2. In vivo experiments in target animals
 - a. Short term (28 56 d) with the most efficient substances on their effect on:
 - acceptance
 - feed intake
 - rumen fermentation incl. CH₄-production
 - b. Long term (total lactation/growing/fattening period) recording
 - **animal performance** (feed intake, yields, feed conversion)
 - health
 - quality/safety of milk/meat
 - CH₄-production
 - parameters of rumen fermentation during the experiment (adaptation of microbial population?)