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 GENE MAPPING

= Linkage Analysis (QTL Analysis)

= Fine Mapping Strategies (LDLA approach,
Selective Genotyping, etc.)

= Association Analysis, Candidate Gene Approach

= Genome-wide Association Analysis (GWAS)



[ HIGH DENSITY SNP PANELS }

= Species: cattle, chicken, pigs
= Technology (Affymetrix, Illumina, etc.)

= Genome-wide Association Analysis (GWAS),
Genome-wide Marker Assisted Selection (GWMANS),

Population Structure, Selection Signature, etc.



[ EXAMPLE 1 }
(Charlier et al., 2008)

= Fine-scale mapping of recessive disorders in cattle

= Custom-made 60K 1Select panel and 25K Affymetrix array

= Case-control study

= Statistical analysis: detection of overlapping, unusually long,
homozygous chromosome segments among affected animals

Fopulation Mapping
Defect Breed Cases Controls Log(l/p) Chrom Interval Gene
Congenital muscular dystonia 1 Belgian Blue 12 (81) 14 {2,000) =i 25 2.12Mb ATPAZAI
Congenital muscular dystonia 2 Belgian Blue T (21) 24 (2,000) =d 29 3.61 Mb SLCAAS
Ichthyosis fetalis Chianina 3(3) 9 (96) 3.30 2 11.78 Mb  ABCAl1Z
Crooked tail syndrome Belgian Blue 8 (36) 14 (2,000) =4 19 2.42 Mb -
Renal lipofuscinosis Holstein Friesian Danish Red 6 (16) 6 (27) 24 (141) 14 =4 17 0.87 Mb -

Number of animals genotyped and total available



[ EXAMPLE 2 ]
(Kolbehdari et al., 2008)

= 462 Canadian Holstein bulls
= 1,536 SNPs

= 17 conformation and functional traits

= Trait-specific single locus LD regression model

-

= Genome- and chromosome-wise significance level

EBV, =p+go+u, +g (0 forl-1
[ulauzao--,uq]'NN(O,AGi) gi:4 1 forl-2
[819829"'98q]'NN(0,IG§) \2 f0r2_2

= 45 and 151 SNPs found associated with at least 1 trait



 EXAMPLE 3 |
(Daetwyler et al., 2008)
= 484 Holstein sires; 9,919 SNPs; 7 traits

= Selective genotyping within a granddaughter design
= HW, Heterozygosity (H), and PIC

= Variance component linkage analysis (VCLA)

v ~ N(O0, GGéTL) — G: IBD prob. matrix
e~ N(0,Ic?)

= Single locus LD regression model (LDRM)

iid

y=Xp+Zu+e — y =EBV; e ~N(0,6))

y=1lu+Zu+7Z,v+e {

= 5% chromosome-wise FDR: 102 ‘potential’ (VCLA)
and 144 significant (LDRM) QTL



[ EXAMPLE 4 }
(Barendse et al., 2007)

= Feed intake (RFI) 1n cattle
= Total of 1,472 animals from 7 breeds (Taurine and Zebu)

= Selective genotyping: 189 extreme animals within CG
(sex, feed group, herd, and market destination)

= MegAllele Genotyping Bovine 10K SNP Panel on
Aftymetrix GeneChip

= Tests for genotypic frequency homogeneity across
breeds, and HW (within?) breeds

= Single marker analysis using permutation test

= 161 SNPs with P <0.01 (FDR 17.4%)
= Validation performed on 44 selected SNPs



[ ASSOCIATION ANALYSIS }

= Data Cleaning: Data preprocessing

= Data Imputation: Missing genotypes
(information from allelic frequencies, LD,
recombination rates, phenotype, etc.)

= Statistical Analysis:
= Significance analysis
= ‘Large p, small n” paradigm

= Multiple testing



DESCRIPTIVE STATISTICS
& DATA CLEANING

= Measurement/recording error
= Genotyping error; Mendelian inconsistencies
= Redundancies

= Heterozygosity (H)
Polymorphism Information Content (PIC)

= Minor Allele Frequency (MAF)

= Hardy-Weinberg equilibrium



TYPOLOGY OF
GENETIC ASSOCIATION TESTS

Association in the Presence of Linkage

Test Conditioned on

Tests Based on

Association Parental Genotypes | Controlling for
(Directly or Background
Indirectly) NLD
Residuals | Ordinary Association TDT’s Structured
Unrelategs\ Test Association
Related | Ordinary Association TDT’s with Testing
Residuals |\ Tests with Related /| Multiple Offspring | Genomic Control
Individuals or Pedigrees




[ SINGLE MARKER REGRESSION }

= Diallelic marker (additive genetic effect only):

Phenotypic trait

yi=ut+tX,g+¢
— / T~ Residual term
\ (non-marked genetic +

x;=-1,00r1  “Effect” of  environmental effects)
(marker genotype on individual 1) the marker

= IBD and combined LD-LA approaches (Zhao et al. 2007)

= Dominance effect: y, =p+x.0+(-|x;[)0+e¢,

1

m—1
= Multi-allelic marker (haplotype): y. =p+ Z X, g +e, [Calus ct al. 2007}
k=1

Hayes et al. 2007

= Population structure: y =1p+Xg+Zu+e, u~ N(0,Ac’)



[ MULTIPLE MARKER REGRESSION }

= Diallelic markers (additive genetic effects only):

P
y:1u+Zngj+e

j=1

 [f the number of markers (p) is large, fitting such a model using standard
regression approaches is not trivial.

« Various strategies have been proposed to overcome this difficulty, such as:
- Stepwise selection methodology

- Dimension reduction techniques, such as singular vale decomposition and
partial least squares (Hastie et al. 2001)

- Ridge regression (Whittaker et al. 2000, Muir 2007)
- Shrinkage estimation (Meuwissen et al. 2001, Gianola et al. 2003, Xu 2003)



[ SHRINKAGE APPROACHES ]

p
= Model: Y =1M+Zngj +e

=1
= Marker effects assumed normally distributed with a

. : 2
common variance, i.e.. g; ~ N(0,67)

= Estimates:

gl 11 x| [ry
g| [ X1 XX+Iy| [ Xy

2 2
where y=0,/0,




[ SHRINKAGE APPROACHES ]

(Meuwissen et al. 2001, Xu 2003)

p p
y=In+Q Xg+e — ylug,o.~Np+) Xig, Io7)

1

=1 J

= Prior distributions:

[
gj |G? ~ N(Oacjz)

o ~1 " (v.9)

< (scaled inverted chi-square distribution with
scale parameter S and v degrees of freedom)

\_ Gz ~ X_z (_290)




[ SHRINKAGE APPROACHES }

p p
y=1lp+) Xg +e — y|ug,ol~N1p+) Xg.Ic))

=1 j=1
( g, =0 with probability ©t

g. |67 ~N(0,67) with probability (1 - m)
= Prior distributions: < n ~ Beta(o, B)

G ~% " (v,S)

\ Gi ~ X_z (_290)

= Alternative distributions for g;: if instead of a Gaussian process, a

double exponential distribution 1s adopted — Bayesian LASSO
(Park and Casella 2008)



[ GWAS Including Non-Additive Genetic Effects ]

= Many studies that attempt to identify the genetic basis of complex traits
ignore the possibility that loci interact, despite its known substantial
contribution to genetic variation (Carborg and Haley 2005)

= Extensions of the GWAS model to accommodate dominance and some
level of epistasis have been proposed (Y1 et al. 2003, Huang et al. 2007,
Xu 2007), which can be described as:

p p
y=lu+2 Xg;+> X;g +e
=i >

where the g, refer to interaction terms relative to epistatic effects
involving locijand j’, and X represent appropriate design matrices.



[ GWAS Including Non-Additive Genetic Effects ]

= In the case of diallelic loci, each row of X,g: can be factorize into
additive and dominance effects as Xug i = X0 + (=[x o,
where x;; = -1, 0 or 1 for the three possible genotypes aa, Aa and
AA, respectlvely, and o and o, represent the additive and
dominance effects relative to loci j.

= Similarly, the four degrees of freedom relative to each pairwise
Interaction between biallelic loci can be described as:

IJJg”—xuxuococ X (1= x5 oo,

+ X, (1= x;; oo, + (1= [ x =] x;; [)0d;;

where aa ;;, a0, 00, and 00, represent additive x additive,

additive x dominance, dominance x additive, and dominance x
dominance epistasis between loci j’ and j.



[ GWAS Including Non-Additive Genetic Effects }

= Similar statistical and computational strategies discussed previously can
be used also for fitting the non-additive GWAS model, such as
dimension reduction techniques and hierarchical modeling approaches.

= The non-additive GWAS model presented, however, relies on strong
assumptions, such as linearity, multivariate normality, and proportion of
segregating loci (Gianola et al. 20006).

= In addition, the genome seems to be much more highly interactive than
what standard quantitative genetic models can accommodate. For
example, the number of higher-order interactions (i.e., multi-loci
epistatic effects) grows extremely quickly with the increase on the
number of markers; moreover, the partition of genetic variance into
orthogonal additive, dominance, additive x additive, additive x
dominance, etc. components is possible only under highly idealized,
unrealistic conditions (Cockerham 1954, Kempthorne 1954).



[ FEATURE SELECTION }

= Two-step approaches (e.g., Hoh et al. 2000): selection of a small number
of influential markers (features), which are then used for more elaborate
modeling of the relationship between markers and the target trait.

= Two-step procedures require an efficient method for optimal selection of
influential features. Long et al. (2007) developed a machine learning
selection methodology for binary traits, which consisted of filtering (using
information gain), and wrapping (using naive Bayesian classification).

= The filter is a preprocessing method, which reduces the large number of
SNPs to a much smaller size, to facilitate the wrapper step.

= The wrapper step then optimizes the performance of the top scoring SNPs
selected by the filter. It consists of an iterative search-evaluate-search
algorithm, using cross-validation accuracy to evaluate the selected feature
subset’s usefulness.

= Long et al. (2007) found that the two-step method improved naive
Bayesian classification accuracy over the case without feature selection,
from around 50 to above 90% without and with feature selection.



 TESTING HYPOTHESES |

Significance
HYPOTHESIS /‘ level
TESTING H, is not rejected | H, 1s rejected /
H, is true No error (1-a) (| Type I error (oc)\

H, is false Type II error (B) . No error (1-3)

/

Power

®» Standard approach:

@ Specify an acceptable type I error rate (o)

@ Seck tests that minimize the type II error rate (),
i.e., maximize power (1 - )



* STATISTICAL POWVER |

= Power 1s a function of:

- Significance level (o)
= Sample size (n)

- Effect size (0), expressed as a proportion of variance
in measured phenotype, subsumes allele frequency,
mode of inheritance, measurement reliability, degree
of LD, and all other aspects of genetic model

= Test statistic (T)



* GENOME COVERAGE
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* GENOME COVERAGE
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Pigs: r? = 0.2 at 1,000 kb (Du et al. 2007)
Chickens: y?’> 0.2 28-57% of marker pairs 5-10 cM apart (Heifetz et al. 2005)




* GENOME COVERAGE
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(McKay et al. 2007)

HO: Holstein, JB: Japonese Black, AN: Angus,
DBW: Dutch Black & White Dairy, BR: Brahman, NEL.: Nelore

Limousin, CHA: Charolais,



[ SELECTIVE GENOTYPING }

Ca=1.3
0=0.6
c2=1.0 L o
f(Q)=0.6 Haq Hog Moo
L f(q)=0.4




* SIMULATION STUDY |

(A=2
o? =81
n =500 Hag Hog

. t=0.5,0.25 and 0.1




[ COMPARING GENOTYPIC }

FREQUENCIES

Genotype
Phenotype A B Total
Low LA LB L
High HA HB H
Total A B N
, Nx(LAxHB-HAxLB)* ,
X" = ~ Xidr

AxBxLxH




COMPARING MEANS
WITH A MIXTURE MODEL

- EM algorithm and LRT
JT‘\‘ ’./ T\
i ‘\“ ! i Phenotype | Genotype
R L Yool A
E “U; E ............. Yo ol A ............
i fx‘i E Y3 ?
" / y,‘ S e O P
AN VU Ya_ | B ..
_:,/,! "\‘.‘L ys B

-
2
L

Mg /
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 RESULTS |

t=.10
mT=.25
T =.50

Statistic | Test | a=0.01 | «=0.05 | a=0.10
Type 1 e 014 062 .086
Error LRT 042 116 186
2 256 536 .596
Power b
LRT 442 .678 774
Statistic | Test | a=0.01 | «=0.05 | a=0.10
Type 1 e .008 .040 072
Error LRT 010 .050 .094
2 354 .644 736
Power X
LRT 470 718 792
Statistic | Test | a=0.01 | «=0.05 | a=0.10
Type 1 e .008 .046 .088
Error LRT 016 042 .098
2 254 .542 .642
Power b
LRT 464 .696 796




[ SELECTIVE GENOTYPING }

Locus Parameter

Mode of inheritance

additive dominant recessive
A taa (owan)  0.064 (1) 0.032(1) 0.032(1)
aa (Owaa)  0.564 (1) 1.032(1) 0.032(1)
Uaa (Owaa) 1.064 (1) 1.032(1) 1.032(1)
P, 0.500 0.077 0.385
B ugg (owgg)  0.500(1) 0.148 (1) 0.148(1)
upp (owpp)  2.500(1) 4.148(1) 0.148(1)
Ubb (Cwbb) 4.500(1) 4.148(1) 4.148(1)
Py 0.016 0.004 0.089

Power

107

0.8

05 -

02 -

L+ T R

Legus A
Aadditive
Daminant
Rgeasdive

% 1n each side of the distribution: 50 40 30

] T T ] I I I ] ]
100 125 180 475 200 225 250 275 300
Z cutoff

20 10 5 1 A5

(Allison et al., 1998)




[ THE MULTIPLE TESTING ISSUE }

Suppose you carry out 10 hypothesis tests at the 5% level
(assume independent tests )

The probability of declaring a particular test
significant under its null hypothesis 1s 0.05

< But the probability of declaring at leastl/
of the 10 tests significant 15 0.401

1-0.95%

If you perform 20 hypothesis tests, this probability
\ increases to 0.642...

» Typically thousands of markers tested simultaneously

» Example: Suppose trait with H? = 0 and association analysis considering
100 markers and o = 5% (for each test)

« Expected 100 x 0.05 = 5 false associations...



[ THE MULTIPLE TESTING ISSUE }

# H, not rejected

# H, rejected

# true H,

A

B m,

# false H,

C

D m,

m - R

TR ()

Observable quantity (n2 rejected H,) known quantity

e Family-wise error rate (FWER):

FWER = Pr(B>1)=1-Pr(B = 0)

- False discovery rate (FDR): FDR =\E[B/ R|R > OlPr(R > 0)

h'd

Positive FDR (pFDR); Storey (2002)



[ MULTIPLE TESTING CONTROL }

@ Controlling family-wise type | error rates (FWER)
(Westfall and Young, 1993)

FWER = Pr(V >1)=1-Pr(V = 0)

FWER, =Pr(V >k)=1-Pr(V<k) (Chen and Storey, 2006)

@ False discovery rate (FDR)
(Benjamini and Hochberg, 1995; Storey et al., 2002)

FDR =E[V/R|R > 0]Pr(R >0)

Y
Positive FDR (pFDR); Storey (2002)




DISTRIBUTION OF P-VALUES
(Histogram)

Under H, Mixture of H, and H_

Percent
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P-value P-value




F Test

DISTRIBUTION OF P-VALUES
(Q-Q Plot)

Under H, Mixture of H, and H_

F Test
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[ HOW MANY SAMPLES SHOULD | USE? }

*In the context of multiple testing:

—  Mixture of a Uniform and a Beta Distribution .
—— A Single Unifarm Distribution

Gadbury et al. (2004) 20

=i
o
1

Relative Frequency

D A 1.0t
TP - ) TN — ’
C+D A+B 0s III I I
D 0.0
EDR — U.ID D.IE OI.4 DTB UI.B 1.lD
B + D P-walue from T-test

n n* T TP

ep-value - t »> t* — p-value® - < TN
EDR

Other methods (FDR-based): Muller et al. (2004), Hu et al. (2005) and Jung (2005)



 EXAMPLE

= GWAS in dairy cattle with the SOK SNP bovine chip

= Fertilization and embryo survival rates: y ~ Bin(m , p)

= Even if only 40-50% of SNPs are polymorphic and with MAF > 0.10 —
about 10 SNPs/cM, i.e. an average spacing of 100 kb between SNPs

_ QTN
d=25kb d,...=50kb
— L A
| |
| |
SNP, ™ ~ ~ SNP,
100 kb
= Selective genotyping:
X7 N x (LA xHB—-HA xLB)
AxBxLxH
1= YIs._e.Y2 = o

2
~ Aiaf



 EXAWPLE |

Group 1: X,,X,,...,X, ~Bimn(m,p,)
= " . } HO: pX :py
Group 2: ¥1,¥25-->Y,, ~Bm(m;,p,)

= X. ~Bm(m,p) — lezxi N N(p,p(l—p)j
n

N
0.5x0.5 1

Upper limit =
n 4n

= Multiple testing: Assuming an equivalent to 25,000 independent tests:
o =0.05/25,000=0.000002 (Bonferroni)



 EXAMPLE
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= Previous studies with STATS5A: Differences of 7.7% in fertilization
rates and 12.8% in survival rates (Khatib et al. 2008)




 EXAMPLE

= However, LD level should be taken into account
= Example: Genetic effect of 12.8%
> =1 — Power = 90%
{ > = 0.5 —» Power = 35%
But still approx. 1/3 chance of detecting QTL of such size
= Selective genotyping can improve power:

Kathib et al. (2008) estimated survival rates of 52.7 and
25.9% for CC and GG cows, respectively.



~ VALIDATION
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~ VALIDATION
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= True model: y; = p + Group; + ¢;;

Group {' ‘g



 REPLICATION |

= Confounding factors, population structure and
stratification, Type I error, etc.

= Biased estimates of gene effects due to significance
threshold

= Multiple genes, with modest individual effects

= Gene x gene and gene x environment interactions
= Inter population heterogeneity

= Low statistical power

= Validation of association findings

= But what constitutes a replication?



[ REPLICATION }
(Chanock et al. 2007)

= Comprehensive reviews of the literature demonstrate a
plethora of questionable genotype-phenotype associations,
replication of which has often failed in independent studies

= “Replication 1s essential for establishing the credibility of a
genotype-phenotype association, whether derived from
candidate-gene or genome-wide association studies”™

= But what consists a replication? How should validation study
be performed? ‘Independent’ samples, independent labs,
different statistical analysis approach, etc.?

= Jiont analysis 1s more efficient than replication-based analysis
for two-stage GWAS (Skol et al. 2006)



 REPLICATION |

Box 3 | Suggested criteria for establishing positive replication

These criteria are intended for follow-up
studies of initial reports of genotype-
phenotype associations assessed by genome-
wide or candidate-gene approaches.

» Replication studies should be of sufficient
sample size to convincingly distinguish the
proposed effect from no effect

» Replication studies should preferably be
conducted in independent data sets, to avoid
the tendency to split one well-powered study
into two less conclusive ones

» The same or a very similar phenotype should
be analysed

» A similar population should be studied,
and notable differences between the
populations studied in the initial and
attempted replication studies should be
described

 Similar magnitude of effect and significance
should be demonstrated, in the same
direction, with the same SNP ora SNP in
perfect orvery high linkage disequilibrium
with the prior SNP (r* close to 1.0)

» Statistical significance should first be
obtained using the genetic model reported in
the initial study

» When possible, ajoint or combined analysis
should lead to asmaller P-value than that
seen in the initial report™

» A strong rationale should be provided for
selecting SNPs to be replicated from the
initial study, including linkage-disequilibrium
structure, putative functional data or
published literature

» Replication reports should include the same
leve| of detail for study design and analysis
plan as reported for the initial study (Box 1)




~ TWO-STAGE DESIGNS

= GWAS (Satagopan et al. 2003, Skol et al. 2007)
{ 15t stage: All markers available

2nd stage: Selected markers

= Transcriptional Profiling
(Steibel et al. 2008)

15t stage: Microarray chips
2nd stage: qRT-PCR

Ascending rank
of P-values

‘Confirmed’ DE -

Gene List




' CONCLUDING REMARKS

= Current (or oncoming) 50-60 K SNP chips provide
reasonable genome coverage in cattle, pig and chicken

= Sample sizes still limited for reasonable power, except for
‘major’ QTNs

= Two-stage studies with selective genotyping may reduce
costs and improve results

= Appropriate design and statistical analysis of GWAS
= High dimensionality
= Multiple testing

= G x G and G x E interactions
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