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Linkage Analysis (QTL Analysis)

Fine Mapping Strategies (LDLA approach, 
Selective Genotyping, etc.)

Association Analysis, Candidate Gene Approach

Genome-wide Association Analysis (GWAS)

GENE MAPPING



Species: cattle, chicken, pigs

Technology (Affymetrix, Illumina, etc.)

Genome-wide Association Analysis (GWAS),
Genome-wide Marker Assisted Selection (GWMAS), 
Population Structure, Selection Signature, etc.

HIGH DENSITY SNP PANELS



Fine-scale mapping of recessive disorders in cattle

Custom-made 60K iSelect panel and 25K Affymetrix array

Case-control study

Statistical analysis: detection of overlapping, unusually long, 
homozygous chromosome segments among affected animals

EXAMPLE 1

(Charlier et al., 2008)

Number of animals genotyped and total available



462 Canadian Holstein bulls

1,536 SNPs

17 conformation and functional traits

Trait-specific single locus LD regression model

Genome- and chromosome-wise significance level

45 and 151 SNPs found associated with at least 1 trait

EXAMPLE 2

(Kolbehdari et al., 2008)
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484 Holstein sires; 9,919 SNPs; 7 traits

Selective genotyping within a granddaughter design

HW, Heterozygosity (H), and PIC

Variance component linkage analysis (VCLA)

Single locus LD regression model (LDRM)

5% chromosome-wise FDR: 102 ‘potential’ (VCLA) 
and 144 significant (LDRM) QTL

EXAMPLE 3

(Daetwyler et al., 2008)
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Feed intake (RFI) in cattle

Total of 1,472 animals from 7 breeds (Taurine and Zebu)

Selective genotyping: 189 extreme animals within CG 
(sex, feed group, herd, and market destination)

MegAllele Genotyping Bovine 10K SNP Panel on 
Affymetrix GeneChip

Tests for genotypic frequency homogeneity across 
breeds, and HW (within?) breeds

Single marker analysis using permutation test

161 SNPs with P < 0.01 (FDR 17.4%)

Validation performed on 44 selected SNPs

EXAMPLE 4

(Barendse et al., 2007)



Data Cleaning: Data preprocessing 

Data Imputation: Missing genotypes
(information from allelic frequencies, LD, 
recombination rates, phenotype, etc.)

Statistical Analysis:

Significance analysis

‘Large p, small n’ paradigm

Multiple testing

ASSOCIATION ANALYSIS



Measurement/recording error

Genotyping error; Mendelian inconsistencies

Redundancies

Heterozygosity (H)
Polymorphism Information Content (PIC)

Minor Allele Frequency (MAF)

Hardy-Weinberg equilibrium

DESCRIPTIVE STATISTICS 
& DATA CLEANING



TYPOLOGY OF 
GENETIC ASSOCIATION TESTS

TDT’s with 
Multiple Offspring 

or Pedigrees

Ordinary Association 
Tests with Related 

Individuals

Related 
Residuals

Structured 
Association 

Testing
Genomic Control

TDT’sOrdinary Association 
Test

Residuals 
Unrelated

Tests Based on 
Controlling for 

Background 
NLD

Test Conditioned on 
Parental Genotypes 

(Directly or 
Indirectly)

Association

Association in the Presence of Linkage



SINGLE MARKER REGRESSION 

Diallelic marker (additive genetic effect only):

Residual term
(non-marked genetic + 
environmental effects)

iii egxµy ++=

xi = -1, 0 or 1
(marker genotype on individual i)

“Effect” of 
the marker

Phenotypic trait

IBD and combined LD-LA approaches (Zhao et al. 2007)

Dominance effect: 

Multi-allelic marker (haplotype):   
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Diallelic markers (additive genetic effects only):

eX1y ++µ= ∑
=

p
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MULTIPLE MARKER REGRESSION 

• If the number of markers (p) is large, fitting such a model using standard 
regression approaches is not trivial. 

• Various strategies have been proposed to overcome this difficulty, such as:

- Stepwise selection methodology

- Dimension reduction techniques, such as singular vale decomposition and 
partial least squares (Hastie et al. 2001)

- Ridge regression (Whittaker et al. 2000, Muir 2007)

- Shrinkage estimation (Meuwissen et al. 2001, Gianola et al. 2003, Xu 2003)
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SHRINKAGE APPROACHES
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Marker effects assumed normally distributed with a 

common variance, i.e.:
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SHRINKAGE APPROACHES
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scale parameter S and ν degrees of freedom)
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(Meuwissen et al. 2001, Xu 2003)
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SHRINKAGE APPROACHES

Alternative distributions for gj: if instead of a Gaussian process, a 
double exponential distribution is adopted → Bayesian LASSO 
(Park and Casella 2008)



Many studies that attempt to identify the genetic basis of complex traits 
ignore the possibility that loci interact, despite its known substantial 
contribution to genetic variation (Carborg and Haley 2005)

GWAS Including Non-Additive Genetic Effects

Extensions of the GWAS model to accommodate dominance and some 
level of epistasis have been proposed (Yi et al. 2003, Huang et al. 2007, 
Xu 2007), which can be described as:
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where the       refer to interaction terms relative to epistatic effects 
involving loci j and j’, and        represent appropriate design matrices.
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In the case of diallelic loci, each row of Xjgj can be factorize into 
additive and dominance effects as                               , 
where xij = -1, 0 or 1 for the three possible genotypes aa, Aa and 
AA, respectively, and αj and δj represent the additive and 
dominance effects relative to loci j. 

Similarly, the four degrees of freedom relative to each pairwise
interaction between biallelic loci can be described as:

j'jαα j'jαδ 'jjδα j'jδδwhere          ,         ,         , and          represent additive × additive, 
additive × dominance, dominance × additive, and dominance ×
dominance epistasis between loci j’ and j.

GWAS Including Non-Additive Genetic Effects
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Similar statistical and computational strategies discussed previously can 
be used also for fitting the non-additive GWAS model, such as 
dimension reduction techniques and hierarchical modeling approaches.

The non-additive GWAS model presented, however, relies on strong 
assumptions, such as linearity, multivariate normality, and proportion of 
segregating loci (Gianola et al. 2006). 

In addition, the genome seems to be much more highly interactive than 
what standard quantitative genetic models can accommodate. For 
example, the number of higher-order interactions (i.e., multi-loci 
epistatic effects) grows extremely quickly with the increase on the 
number of markers; moreover, the partition of genetic variance into 
orthogonal additive, dominance, additive x additive, additive x 
dominance, etc. components is possible only under highly idealized, 
unrealistic conditions (Cockerham 1954, Kempthorne 1954).

GWAS Including Non-Additive Genetic Effects



Two-step approaches (e.g., Hoh et al. 2000): selection of a small number 
of influential markers (features), which are then used for more elaborate 
modeling of the relationship between markers and the target trait. 

Two-step procedures require an efficient method for optimal selection of 
influential features. Long et al. (2007) developed a machine learning 
selection methodology for binary traits, which consisted of filtering (using 
information gain), and wrapping (using naïve Bayesian classification). 

The filter is a preprocessing method, which reduces the large number of 
SNPs to a much smaller size, to facilitate the wrapper step. 

The wrapper step then optimizes the performance of the top scoring SNPs
selected by the filter. It consists of an iterative search-evaluate-search 
algorithm, using cross-validation accuracy to evaluate the selected feature 
subset’s usefulness. 

Long et al. (2007) found that the two-step method improved naïve 
Bayesian classification accuracy over the case without feature selection, 
from around 50 to above 90% without and with feature selection.

FEATURE SELECTION



HYPOTHESIS 
TESTING

No error (1-β)Type II error (β)H0 is false

Type I error (α)No error (1-α)H0 is true

H0 is rejectedH0 is not rejected

Power

Significance 
level

Standard approach:

Specify an acceptable type I error rate (α)

Seek tests that minimize the type II error rate (β),
i.e., maximize power (1 - β)

TESTING HYPOTHESES



STATISTICAL POWER

Power is a function of:

Significance level (α)

Sample size (n)

Effect size (δ), expressed as a proportion of variance 
in measured phenotype, subsumes allele frequency, 
mode of inheritance, measurement reliability, degree 
of LD, and all other aspects of genetic model

Test statistic (T)



GENOME COVERAGE

Genome Position

LD (r2)

Lightning rod,
or cellular coverage…

1



GENOME COVERAGE
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Pigs: r2 ≈ 0.2 at 1,000 kb (Du et al. 2007)
Chickens: χ2’≥ 0.2   28-57% of marker pairs 5-10 cM apart (Heifetz et al. 2005)
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HO: Holstein, JB: Japonese Black, AN: Angus, LM: Limousin, CHA: Charolais, 
DBW: Dutch Black & White Dairy, BR: Brahman, NEL: Nelore



SELECTIVE GENOTYPING

α = 1.3
δ = 0.6
σ2 = 1.0
f(Q) = 0.6
f(q) = 0.4



SIMULATION STUDY

∆ = 2
σ2 = 81
n = 500
π = 0.5, 0.25 and 0.1

π π
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COMPARING GENOTYPIC 
FREQUENCIES



COMPARING MEANS 
WITH A MIXTURE MODEL

Genotype?

EM algorithm and LRT

By5

By4

?y3

Ay2

Ay1

GenotypePhenotype



.086.062.014χ2Type I
Error

.774.678.442LRT

.596.536.256χ2
Power

.186.116.042LRT

α = 0.10α = 0.05α = 0.01TestStatistic

.088.046.008χ2Type I
Error

.796.696.464LRT

.642.542.254χ2
Power

.098.042.016LRT

α = 0.10α = 0.05α = 0.01TestStatistic

.072.040.008χ2Type I
Error

.792.718.470LRT

.736.644.354χ2
Power

.094.050.010LRT

α = 0.10α = 0.05α = 0.01TestStatistic

RESULTS
π = .10

π = .50

π = .25



SELECTIVE GENOTYPING

(Allison et al., 1998)

% in each side of the distribution: 50   40   30      20      10       5                 1          .15



Suppose you carry out 10 hypothesis tests at the 5% level
(assume independent tests )

The probability of declaring a particular test 
significant under its null hypothesis is 0.05

But the probability of declaring at least 1 
of the 10 tests significant is 0.401

If you perform 20 hypothesis tests, this probability 
increases to 0.642…

1 - 0.9510

Typically thousands of markers tested simultaneously

Example: Suppose trait with H2 = 0 and association analysis considering 
100 markers and α = 5% (for each test)

• Expected 100 × 0.05 = 5 false associations…

THE MULTIPLE TESTING ISSUE



m1DC# false H0

R

B

# H0 rejected

mm – R

m0A# true H0

# H0 not rejected

Observable quantity (no rejected H0) known quantity

• Family-wise error rate (FWER): )0BPr(1)1BPr(FWER =−=≥=

• False discovery rate (FDR): )0RPr(]0R|R/B[EFDR >>=

Positive FDR (pFDR); Storey (2002)

THE MULTIPLE TESTING ISSUE



Controlling family-wise type I error rates (FWER)
(Westfall and Young, 1993)

False discovery rate (FDR)
(Benjamini and Hochberg, 1995; Storey et al., 2002)

)0VPr(1)1VPr(FWER =−=≥=

)0RPr(]0R|R/V[EFDR >>=

Positive FDR (pFDR); Storey (2002)

)kVPr(1)kVPr(FWERk ≤−=>=

MULTIPLE TESTING CONTROL

(Chen and Storey, 2006)



Under H0 Mixture of H0 and Ha
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(Histogram)



Under H0 Mixture of H0 and Ha
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DISTRIBUTION OF P-VALUES
(Q-Q Plot)



HOW MANY SAMPLES SHOULD I USE?

* In the context of multiple testing:

Gadbury et al. (2004)
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Other methods (FDR-based): Muller et al. (2004), Hu et al. (2005) and Jung (2005)



EXAMPLE

GWAS in dairy cattle with the 50K SNP bovine chip

Fertilization and embryo survival rates: y ~ Bin(m , p)

Even if only 40-50% of SNPs are polymorphic and with MAF > 0.10 →
about 10 SNPs/cM, i.e. an average spacing of 100 kb between SNPs

100 kb

QTN
dmax = 50 kb

SNP1 SNP2

d = 25 kb

Selective genotyping:
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EXAMPLE

Multiple testing: Assuming an equivalent to 25,000 independent tests:
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EXAMPLE

Previous studies with STAT5A: Differences of 7.7% in fertilization 
rates and 12.8% in survival rates (Khatib et al. 2008)

Sample Size per Group

Po
w

er

Mean 
Difference:



EXAMPLE

However, LD level should be taken into account

Example: Genetic effect of 12.8%

r2 = 1 → Power ≈ 90%

r2 = 0.5 → Power ≈ 35%

But still approx. 1/3 chance of detecting QTL of such size

Selective genotyping can improve power: 

Kathib et al. (2008) estimated survival rates of 52.7 and 
25.9% for CC and GG cows, respectively.



VALIDATION



VALIDATION



True model: yij = µ + Groupi + eij

CONFOUNDING



Confounding factors, population structure and 
stratification, Type I error, etc.

Biased estimates of gene effects due to significance 
threshold

Multiple genes, with modest individual effects

Gene × gene and gene × environment interactions

Inter population heterogeneity

Low statistical power

Validation of association findings

But what constitutes a replication?

REPLICATION



Comprehensive reviews of the literature demonstrate a 
plethora of questionable genotype-phenotype associations, 
replication of which has often failed in independent studies

“Replication is essential for establishing the credibility of a 
genotype-phenotype association, whether derived from 
candidate-gene or genome-wide association studies”

But what consists a replication? How should validation study 
be performed? ‘Independent’ samples, independent labs, 
different statistical analysis approach, etc.?

Jiont analysis is more efficient than replication-based analysis 
for two-stage GWAS (Skol et al. 2006)

REPLICATION

(Chanock et al. 2007)



REPLICATION



GWAS (Satagopan et al. 2003, Skol et al. 2007)
1st stage: All markers available
2nd stage: Selected markers

TWO-STAGE DESIGNS

Transcriptional Profiling
(Steibel et al. 2008)
1st stage: Microarray chips
2nd stage: qRT-PCR



Current (or oncoming) 50-60 K SNP chips provide 
reasonable genome coverage in cattle, pig and chicken

Sample sizes still limited for reasonable power, except for 
‘major’ QTNs

Two-stage studies with selective genotyping may reduce 
costs and improve results

Appropriate design and statistical analysis of GWAS
High dimensionality
Multiple testing
G × G and G × E interactions

CONCLUDING REMARKS
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