59th Annual meeting of the European Association for Animal Production Vilnius, Lithuania, 24-27 August, 2008

Economic Evaluation of Genomic Selection

Sven König¹, Henner Simianer¹, Alfons Willam²

¹Institute of Animal Breeding and Genetics, University of Göttingen, Germany ² Division of Livestock Sciences, BOKU – University of Natural Resources and Applied Life Sciences, Vienna, Austria

Modeling of dairy cattle breeding programs

- 1. A Conventional Progeny Testing Program (CPTP)
- 2. Different versions of Genomic Breeding Programs (GBP)

.....applying the computer program ZPLAN

ZPLAN

Manual for a PC-Program to Optimize Livestock Selection Schemes

> Manual Version 2008 for Source Code "z10.for"

A. WILLAM¹, G. NITTER², H. BARTENSCHLAGER², K. KARRAS², E. NIEBEL², H.-U. GRASER³

- written in Fortran
- deterministic calculations
- essential subroutines:
 - gene flow (Hill, 1974)
 - selection index

The CPTP for 50 test bulls per year

The GBP for 50 "test bulls" per year

Scenarios of the GBP Costs for genotyping 50 € → 500 € Accuracy of genomic index $0.40 \rightarrow 0.99$ Genotyping of 200 **100** genomic selected pre-selected bull dams mated to bull sires potential bull dams **SNP** Information Genotyping of 50 male calves (YB) Initial sample size SNP' Information 50 sires and 50 sens per sire to estimate SMP offects No. of selected **5** YB selected as cow and cow sires bull sires 5-25 65,000 registered herdbook cows (HC) 35,000 production cows (PC)

Proportion of AI with genotyped YB having daughter records (YB-D)

Gene flow matrix for CPTP

	Selection groups		
	Proven bulls	Herdbook cows	Production
	(PB)	(HC)	cows (PC)
PB	1.PB → PB	2. HC → PB	-
HC	$3.YB \rightarrow HC$ $5. HC \rightarrow HC$		-
	$4.PB \rightarrow HC$		
PC	6. PB → PC	-	7. $PC \rightarrow PC$

Gene flow matrix for GBP-YB / GBP-YB-D

	Selection groups			
	Young bulls	Herdbook cows	Production	
	(YB)	(HC)	cows (PC)	
YB	$1.YB \rightarrow YB$	2. HC → YB	_	
HC	3.YB → HC	5. $HC \rightarrow HC$	_	
	4. YB-D → HC			
PC	6.YB → PC	-	8. PC \rightarrow PC	
	7. YB-D → PC			

Accuracy of aggregate genotypes (r_{TI}): modeling via selection index calculations

2 traits in the overall breeding goalwith equal economic weights per genetic SD1 production trait1 functional trait

	Prod.	Func.
Prod.	0.30	-0.20
Func.	-0.10	0.05

 \mathbf{r}_{TI} for selection groups in **CPTP**: according to information sources

 \mathbf{r}_{TI} of genomic indices for selection groups in GBP-YB / GBP-YB-D:

Fix for all genotyped groups, i.e.

1.YB
$$\rightarrow$$
 YB, 2.HC \rightarrow YB ,3.YB \rightarrow HC, 4.YB-D \rightarrow HC, 6.YB \rightarrow PC, 7.YB-D \rightarrow PC

Not genotyped: $5.HC \rightarrow HC$ and $8.PC \rightarrow PC$ (only own performance and performance of dam as information sources)

Some parameters of the breeding program.....

Input parameters	Numbers or costs
Population parameters	
Population size	100,000
Proportion of registered cows	0.65
Proportion of A.I.	1.00
Test capacity (i.e. proportion of recorded cows mated with test bulls)	0.25
Young bulls tested per year	50
Proven bulls selected per year, out of these	5
Inseminations per daughter lactation record	10
Biological and technical coefficients	
Average calving interval (in years)	1.15
Inseminations per pregnancy	2.40
Proportion of losses during raising (female)	0.15
Use of proven bulls (years)	3.00
Use of bull dams (years)	2.50
Mean generation interval (years)	4.66
Cost parameters (EURO)	
Milk recording costs per cow	31
Inspection bull dam per selected bull dam	100
Keeping test bull on station per year (fixed and variable costs)	5,000
Herdbook registration per cow	1.5
Interest rate return	0.06
Interest rate costs	0.04
Investment period (years)	15

Essential differences in biological and technical coefficients and breeding costs when comparing CPTP and GBP

Biological / technical coefficients			Costs	
Breeding	Cows mated	Gen. interval for	Gen.	Genotyping
program	to YB	$YB \rightarrow HC$	interval for	
			$PB \to HC$	
CPTP	25 %	2.1 years	6.2 years	<u> </u>
GBP-YB	100 %	2.1 years for YB	_	250 € per
	(YB + YB-D)	6.2 years for YB-D		animal

Evaluation criteria

- **1. Genetic gain** (Δ G) per year for single traits
- 2. Monetary genetic gain per year $\Sigma(\Delta G * economic weights)$
- Discounted returns per cow over the whole investment period (monetary genetic gain * SDE-values)
- **4. Discounted costs** per cow over the whole investment period
- **5. Discounted profit** per cow over the whole investment period
 - = (Discounted returns discounted costs)

CPTP versus GBP-YB and GBP-YB-D

(r_{TI} of genomic index = 0.70, GBP-YB-D = 50% AI with YB-D, costs for genotyping = 250 €)

Altering percentage of Al with YB-D (r_{TI} of genomic index = 0.70, costs for genotyping = 250 €, no estimation of SNP-effects)

Altering accuracies of genomic inidices (percentage of Al with YB-D = 50%, costs for genotyping = 250 €, no estimation of SNP-effects)

Altering costs for genotyping $(r_{TI} \text{ of genomic index} = 0.70,$ no estimation of SNP-effects, no YB-D)

Altering no. of selected cow sires

(r_{TI} of genomic index = 0.70, costs for genotyping = 250 €, no estimation of SNP-effects, no YB-D)

Annual genetic gain (AGG) and annual monetary genetic gain (AMGG)

(no estimation of SNP-effects, costs for genotyping = 250 €, no YB-D)

Conclusions

- 1. Discounted profit increases by factor 2.8 mainly due to substantial reduction in generation intervals
- 2. Costs for genotyping have a marginal contribution when focussing on a population wide perspective
- 3. The important question is: Will farmers use GEBVs without knowledge of daughter information?
- 4. Genomic selection has the potential for a substantial change of dairy cattle breeding programs

Actual results always lagged behind theoretical expectations (MOET, MAS, GS?)